These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39173497)

  • 1. Alveolar wall hyperelastic material properties determined using alveolar cluster model with experimental stress-stretch and pressure-volume data.
    Singh D; Slutsky AS; Cronin DS
    J Mech Behav Biomed Mater; 2024 Nov; 159():106685. PubMed ID: 39173497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of elastic and surface tension effects in the lung alveolus using finite element methods.
    Kowe R; Schroter RC; Matthews FL; Hitchings D
    J Biomech; 1986; 19(7):541-9. PubMed ID: 3755725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between alveolar size and fibre distribution in a mammalian lung alveolar duct model.
    Denny E; Schroter RC
    J Biomech Eng; 1997 Aug; 119(3):289-97. PubMed ID: 9285342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
    Huang H; Tang W; Tan Q; Yan B
    J Mech Behav Biomed Mater; 2017 Apr; 68():210-215. PubMed ID: 28187321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous structure and surface tension effects on mechanical response in pulmonary acinus: A finite element analysis.
    Koshiyama K; Nishimoto K; Ii S; Sera T; Wada S
    Clin Biomech (Bristol); 2019 Jun; 66():32-39. PubMed ID: 29370949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface forces in lungs. I. Alveolar surface tension-lung volume relationships.
    Smith JC; Stamenovic D
    J Appl Physiol (1985); 1986 Apr; 60(4):1341-50. PubMed ID: 3754553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical behavior of a mammalian lung alveolar duct model.
    Denny E; Schroter RC
    J Biomech Eng; 1995 Aug; 117(3):254-61. PubMed ID: 8618376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs.
    Gefen A; Elad D; Shiner RJ
    J Biomech; 1999 Sep; 32(9):891-7. PubMed ID: 10460125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
    Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y
    J Biomech; 2018 Apr; 71():190-198. PubMed ID: 29477259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic behavior of a lung alveolar duct model.
    Denny E; Schroter RC
    J Biomech Eng; 2000 Apr; 122(2):143-51. PubMed ID: 10834154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model of lung parenchyma.
    Karakaplan AD; Bieniek MP; Skalak R
    J Biomech Eng; 1980 May; 102(2):124-36. PubMed ID: 6893348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional hyperelastic characterization of brain white matter tissue.
    Yousefsani SA; Karimi MZV
    Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact surface and material nonlinearity modeling of human lungs.
    Al-Mayah A; Moseley J; Brock KK
    Phys Med Biol; 2008 Jan; 53(1):305-17. PubMed ID: 18182705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average.
    Lu J; He X
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1833-1850. PubMed ID: 34173928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visco-hyperelastic material model fitting to experimental stress-strain curves using a genetic algorithm and its application to soft tissue simulants.
    Gómez-Garraza S; de Santos R; Infante-García D; Marco M
    Sci Rep; 2024 Aug; 14(1):18026. PubMed ID: 39098981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental characterization and model identification of the nonlinear compressible material behavior of lung parenchyma.
    Birzle AM; Martin C; Yoshihara L; Uhlig S; Wall WA
    J Mech Behav Biomed Mater; 2018 Jan; 77():754-763. PubMed ID: 28822739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.
    Hosseinzadeh M; Ghoreishi M; Narooei K
    J Mech Behav Biomed Mater; 2016 Jun; 59():393-403. PubMed ID: 26953961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.