BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3917379)

  • 1. Liquid-chromatographic study of fluorescent compounds in hemodialysate solutions.
    Barnett AL; Veening H
    Clin Chem; 1985 Jan; 31(1):127-30. PubMed ID: 3917379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-chromatographic study of fluorescent materials in uremic fluids.
    Swan JS; Kragten EY; Veening H
    Clin Chem; 1983 Jun; 29(6):1082-4. PubMed ID: 6851098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterisation of fluorescent substances in spent dialysis fluid.
    Meibaum J; Krause S; Hillmer H; Marcelli D; Strohhöfer C
    Int J Artif Organs; 2020 Sep; 43(9):579-586. PubMed ID: 32013679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of indican and tryptophan in normal and uraemic patients by high-performance liquid chromatography with a new electrochemical detector.
    Laganà A; Liberti A; Morgia C; Tarola AM
    J Chromatogr; 1986 May; 378(1):85-93. PubMed ID: 3090085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of indole-3-acetic acid, tryptophan and other indoles in must and wine by high-performance liquid chromatography with fluorescence detection.
    Mattivi F; Vrhovsek U; Versini G
    J Chromatogr A; 1999 Sep; 855(1):227-35. PubMed ID: 10514987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-chromatographic profiling of endogenous fluorescent substances in sera and urine of uremic and normal subjects.
    Mabuchi H; Nakahashi H
    Clin Chem; 1983 Apr; 29(4):675-7. PubMed ID: 6831696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversed-phase liquid-chromatographic analysis of hemodialysate from uremic patients.
    Senftleber FC; Halline AG; Veening H; Dayton DA
    Clin Chem; 1976 Sep; 22(9):1522-7. PubMed ID: 8223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HPLC study of uremic fluids related to optical dialysis adequacy monitoring.
    Lauri K; Tanner R; Jerotskaja J; Luman M; Fridolin I
    Int J Artif Organs; 2010 Feb; 33(2):96-104. PubMed ID: 20306436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring binding characteristics and the related competition of different protein-bound uremic toxins.
    Deltombe O; de Loor H; Glorieux G; Dhondt A; Van Biesen W; Meijers B; Eloot S
    Biochimie; 2017 Aug; 139():20-26. PubMed ID: 28528271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive determination of deuterated and non-deuterated indole-3-acetic acid and 5-hydroxyindole-3-acetic acid by combined capillary gas chromatography-negative-ion chemical ionization mass spectrometry.
    Hayashi T; Naruse H; Matsuda F; Iida Y
    J Chromatogr; 1988 Jul; 428(2):209-19. PubMed ID: 2463990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The analysis of indolic tryptophan metabolites in human urine. Thin-layer chromatography and in situ quantitation.
    Byrd DJ; Kochen W; Idzko D; Knorr E
    J Chromatogr; 1974 Jul; 94(0):85-106. PubMed ID: 4844607
    [No Abstract]   [Full Text] [Related]  

  • 12. Estimation of removed uremic toxin indoxyl sulphate during hemodialysis by using optical data of the spent dialysate.
    Holmar J; Uhlin F; Ferenets R; Lauri K; Tanner R; Arund J; Luman M; Fridolin I
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6707-10. PubMed ID: 24111282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of tryptophan, 5-hydroxy indole-3-acetic acid and their protein binding in uremic patients.
    Qureshi GA; Baig SM
    Biochem Mol Biol Int; 1993 Mar; 29(3):411-9. PubMed ID: 7683549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic profiling of indole-3-acetic acid biosynthesis in bacteria using LC-MS/MS.
    Lin GH; Chang CY; Lin HR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Apr; 988():53-8. PubMed ID: 25746752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolite profiling of hemodialysate using gas chromatography time-of-flight mass spectrometry.
    Qi X; Zhang Y; Gao J; Chen T; Zhao A; Yan Y; Jia W
    J Pharm Biomed Anal; 2011 Jul; 55(5):1142-7. PubMed ID: 21530126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are the classical markers sufficient to describe uremic solute accumulation in dialyzed patients? Hippurates reconsidered.
    Schoots AC; Dijkstra JB; Ringoir SM; Vanholder R; Cramers CA
    Clin Chem; 1988 Jun; 34(6):1022-9. PubMed ID: 3378319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation, structure elucidation and synthesis of a hexapeptide from the hemodialysate of uremic patients].
    Bovermann G; Rautenstrauch H; Seybold G; Jung G
    Hoppe Seylers Z Physiol Chem; 1982 Oct; 363(10):1187-202. PubMed ID: 7141402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis for indole compounds in urine by high-performance liquid chromatography with fluorometric detection.
    Graffeo AP; Karger BL
    Clin Chem; 1976 Feb; 22(2):184-7. PubMed ID: 2390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new reagent for detecting tryptophan, indole, and indole-3-acetic acid in thin-layer chromatography.
    Boctor FN
    J Chromatogr; 1972 May; 67(2):371-2. PubMed ID: 5030901
    [No Abstract]   [Full Text] [Related]  

  • 20. Separation of six uremic middle molecular compounds by high performance liquid chromatography and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Chu J; Yuan Z; Liu X; Wu Q; Mi H; He B
    Clin Chim Acta; 2001 Sep; 311(2):95-107. PubMed ID: 11566169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.