These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39173818)
1. Real-time chlorophyll-a forecasting using machine learning framework with dimension reduction and hyperspectral data. Kim D; Lee K; Jeong S; Song M; Kim B; Park J; Heo TY Environ Res; 2024 Dec; 262(Pt 1):119823. PubMed ID: 39173818 [TBL] [Abstract][Full Text] [Related]
2. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll Keller S; Maier PM; Riese FM; Norra S; Holbach A; Börsig N; Wilhelms A; Moldaenke C; Zaake A; Hinz S Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30200256 [TBL] [Abstract][Full Text] [Related]
3. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs. Yu W; Wang X; Jiang X; Zhao R; Zhao S Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional augmentation for hyperspectral image data of water quality: An Integrated approach using machine learning and numerical models. Kim J; Seo D Water Res; 2024 Mar; 251():121125. PubMed ID: 38218073 [TBL] [Abstract][Full Text] [Related]
6. Hyperspectral Prediction Models of Chlorophyll Content in Zhang Y; Ru G; Zhao Z; Wang D Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409349 [TBL] [Abstract][Full Text] [Related]
7. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Song K; Li L; Tedesco LP; Li S; Clercin NA; Hall BE; Li Z; Shi K Sci Total Environ; 2012 Jun; 426():220-32. PubMed ID: 22521166 [TBL] [Abstract][Full Text] [Related]
8. Combining physical-based model and machine learning to forecast chlorophyll-a concentration in freshwater lakes. Chen C; Chen Q; Yao S; He M; Zhang J; Li G; Lin Y Sci Total Environ; 2024 Jan; 907():168097. PubMed ID: 37879485 [TBL] [Abstract][Full Text] [Related]
9. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology. Hou Y; Zhang A; Lv R; Zhao S; Ma J; Zhang H; Li Z Environ Sci Pollut Res Int; 2022 Sep; 29(42):63640-63654. PubMed ID: 35460477 [TBL] [Abstract][Full Text] [Related]
10. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Silveira Kupssinskü L; Thomassim Guimarães T; Menezes de Souza E; C Zanotta D; Roberto Veronez M; Gonzaga L; Mauad FF Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32283787 [TBL] [Abstract][Full Text] [Related]
11. Hyperspectral indices data fusion-based machine learning enhanced by MRMR algorithm for estimating maize chlorophyll content. Nagy A; Szabó A; Elbeltagi A; Nxumalo GS; Bódi EB; Tamás J Front Plant Sci; 2024; 15():1419316. PubMed ID: 39479550 [TBL] [Abstract][Full Text] [Related]
12. A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods. Gómez D; Salvador P; Sanz J; Casanova JL Environ Pollut; 2021 Oct; 286():117489. PubMed ID: 34119860 [TBL] [Abstract][Full Text] [Related]
13. Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region. Ren J; Zhou H; Tao Z; Ge L; Song K; Xu S; Li Y; Zhang L; Zhang X; Li S Opt Express; 2024 Apr; 32(9):16371-16397. PubMed ID: 38859266 [TBL] [Abstract][Full Text] [Related]
14. Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam. Nguyen HQ; Ha NT; Nguyen-Ngoc L; Pham TL Water Environ Res; 2021 Dec; 93(12):2941-2957. PubMed ID: 34547152 [TBL] [Abstract][Full Text] [Related]
15. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of machine learning methods for prediction of chlorophyll-a in a river with different hydrology characteristics: A case study in Fuchun River, China. Yang J; Zheng Y; Zhang W; Zhou Y; Zhang Y J Environ Manage; 2024 Jul; 364():121386. PubMed ID: 38865920 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of chlorophyll in Gannan navel orange with algorithm of GA and SPA based on hyperspectral]. Liu YD; Zhang GW; Cai LJ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3377-80. PubMed ID: 23427571 [TBL] [Abstract][Full Text] [Related]
18. Multiple remotely sensed datasets and machine learning models to predict chlorophyll-a concentration in the Nakdong River, South Korea. Lee B; Im JK; Han JW; Kang T; Kim W; Kim M; Lee S Environ Sci Pollut Res Int; 2024 Oct; 31(48):58505-58526. PubMed ID: 39316212 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China). Huang Y; Jiang D; Zhuang D; Fu J Int J Environ Res Public Health; 2010 Jun; 7(6):2437-51. PubMed ID: 20644681 [TBL] [Abstract][Full Text] [Related]
20. Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms. Tuerxun N; Zheng J; Wang R; Wang L; Liu L Front Plant Sci; 2023; 14():1260772. PubMed ID: 38034562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]