These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 39174080)

  • 1. In situ imaging of LPMO action on plant tissues.
    Leroy A; Fanuel M; Alvarado C; Rogniaux H; Grisel S; Haon M; Berrin JG; Paës G; Guillon F
    Carbohydr Polym; 2024 Nov; 343():122465. PubMed ID: 39174080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type.
    Chabbert B; Habrant A; Herbaut M; Foulon L; Aguié-Béghin V; Garajova S; Grisel S; Bennati-Granier C; Gimbert-Herpoël I; Jamme F; Réfrégiers M; Sandt C; Berrin JG; Paës G
    Sci Rep; 2017 Dec; 7(1):17792. PubMed ID: 29259205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass spectrometric fragmentation patterns discriminate C1- and C4-oxidised cello-oligosaccharides from their non-oxidised and reduced forms.
    Sun P; Frommhagen M; Kleine Haar M; van Erven G; Bakx EJ; van Berkel WJH; Kabel MA
    Carbohydr Polym; 2020 Apr; 234():115917. PubMed ID: 32070536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative Power: Tools for Assessing LPMO Activity on Cellulose.
    Calderaro F; Bevers LE; van den Berg MA
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.
    Branch J; Rajagopal BS; Paradisi A; Yates N; Lindley PJ; Smith J; Hollingsworth K; Turnbull WB; Henrissat B; Parkin A; Berry A; Hemsworth GR
    Biochem J; 2021 Jul; 478(14):2927-2944. PubMed ID: 34240737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation.
    Agger JW; Isaksen T; Várnai A; Vidal-Melgosa S; Willats WG; Ludwig R; Horn SJ; Eijsink VG; Westereng B
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6287-92. PubMed ID: 24733907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides.
    Isaksen T; Westereng B; Aachmann FL; Agger JW; Kracher D; Kittl R; Ludwig R; Haltrich D; Eijsink VG; Horn SJ
    J Biol Chem; 2014 Jan; 289(5):2632-42. PubMed ID: 24324265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases.
    Kommedal EG; Angeltveit CF; Klau LJ; Ayuso-Fernández I; Arstad B; Antonsen SG; Stenstrøm Y; Ekeberg D; Gírio F; Carvalheiro F; Horn SJ; Aachmann FL; Eijsink VGH
    Nat Commun; 2023 Feb; 14(1):1063. PubMed ID: 36828821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.
    Frandsen KE; Simmons TJ; Dupree P; Poulsen JC; Hemsworth GR; Ciano L; Johnston EM; Tovborg M; Johansen KS; von Freiesleben P; Marmuse L; Fort S; Cottaz S; Driguez H; Henrissat B; Lenfant N; Tuna F; Baldansuren A; Davies GJ; Lo Leggio L; Walton PH
    Nat Chem Biol; 2016 Apr; 12(4):298-303. PubMed ID: 26928935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of AA9 lytic polysaccharide monooxygenase enzymes on different cellulose allomorphs.
    Grellier M; Moreau C; Beaugrand J; Grisel S; Berrin JG; Cathala B; Villares A
    Int J Biol Macromol; 2024 Aug; 275(Pt 2):133429. PubMed ID: 38944074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases.
    Frommhagen M; Westphal AH; Hilgers R; Koetsier MJ; Hinz SWA; Visser J; Gruppen H; van Berkel WJH; Kabel MA
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1281-1295. PubMed ID: 29196788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.
    Kracher D; Andlar M; Furtmüller PG; Ludwig R
    J Biol Chem; 2018 Feb; 293(5):1676-1687. PubMed ID: 29259126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical Tools for Characterizing Cellulose-Active Lytic Polysaccharide Monooxygenases (LPMOs).
    Westereng B; Loose JSM; Vaaje-Kolstad G; Aachmann FL; Sørlie M; Eijsink VGH
    Methods Mol Biol; 2018; 1796():219-246. PubMed ID: 29856057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.