These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39174463)
1. [Metabolic engineering of Yao Z; Li R; Jiang S; Wu H; Ma Q; Xie X Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2432-2443. PubMed ID: 39174463 [TBL] [Abstract][Full Text] [Related]
2. [Metabolic engineering of Escherichia coli for thymidine production]. Li S; Li X; Chen T Sheng Wu Gong Cheng Xue Bao; 2015 Jan; 31(1):105-14. PubMed ID: 26021084 [TBL] [Abstract][Full Text] [Related]
3. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Li Y; Zhu X; Zhang X; Fu J; Wang Z; Chen T; Zhao X Microb Cell Fact; 2016 Jun; 15():94. PubMed ID: 27260256 [TBL] [Abstract][Full Text] [Related]
4. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate. Yang H; Liu Y; Li J; Liu L; Du G; Chen J Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863 [TBL] [Abstract][Full Text] [Related]
5. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807 [TBL] [Abstract][Full Text] [Related]
6. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related]
7. [Metabolic engineering of the substrate utilization pathway in Xu X; Wang H; Chen X; Wu J; Gao C; Song W; Wei W; Liu J; Liu Y; Liu L Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2513-2527. PubMed ID: 39174468 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Escherichia coli for high-yield uridine production. Wu H; Li Y; Ma Q; Li Q; Jia Z; Yang B; Xu Q; Fan X; Zhang C; Chen N; Xie X Metab Eng; 2018 Sep; 49():248-256. PubMed ID: 30189293 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of myo-inositol in Escherichia coli through metabolic engineering. You R; Wang L; Shi C; Chen H; Zhang S; Hu M; Tao Y Microb Cell Fact; 2020 May; 19(1):109. PubMed ID: 32448266 [TBL] [Abstract][Full Text] [Related]
10. Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering. Zhang K; Qin M; Hou Y; Zhang W; Wang Z; Wang H Microb Cell Fact; 2024 Jun; 23(1):182. PubMed ID: 38898430 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291 [TBL] [Abstract][Full Text] [Related]
12. De novo Synthesis of 2-phenylethanol from Glucose by Metabolically Engineered Escherichia coli. Wang G; Wang M; Yang J; Li Q; Zhu N; Liu L; Hu X; Yang X J Ind Microbiol Biotechnol; 2023 Feb; 49(6):. PubMed ID: 36370454 [TBL] [Abstract][Full Text] [Related]
13. High-level and -yield orotic acid production in Escherichia coli through systematic modular engineering and "Chaos to Order Cycles" fermentation. Li C; Shi T; Fan W; Yuan M; Li L; Yu Z; Chen Z; Xu Q Bioresour Technol; 2024 Nov; 411():131345. PubMed ID: 39182798 [TBL] [Abstract][Full Text] [Related]
14. [Cloning of Bacillus subtilis 168 genes compensating for the defect in mutations for thymidine phosphorylase and uridine phosphorylase in Escherichia coli cells]. Maznitsa II; Sukhodolets VV; Ukhabotina LS Genetika; 1983 Jun; 19(6):881-7. PubMed ID: 6309609 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Escherichia coli for the production of fumaric acid. Song CW; Kim DI; Choi S; Jang JW; Lee SY Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277 [TBL] [Abstract][Full Text] [Related]
16. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW; Kim WJ; Lee SY ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230 [TBL] [Abstract][Full Text] [Related]
17. Fermentative production of thymidine by a metabolically engineered Escherichia coli strain. Lee HC; Kim JH; Kim JS; Jang W; Kim SY Appl Environ Microbiol; 2009 Apr; 75(8):2423-32. PubMed ID: 19251902 [TBL] [Abstract][Full Text] [Related]
18. The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. Petersen C; Møller LB J Biol Chem; 2001 Jan; 276(2):884-94. PubMed ID: 11027694 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose. Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]