These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 39174468)
1. [Metabolic engineering of the substrate utilization pathway in Xu X; Wang H; Chen X; Wu J; Gao C; Song W; Wei W; Liu J; Liu Y; Liu L Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2513-2527. PubMed ID: 39174468 [TBL] [Abstract][Full Text] [Related]
2. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291 [TBL] [Abstract][Full Text] [Related]
3. Engineering of Escherichia coli to facilitate efficient utilization of isomaltose and panose in industrial glucose feedstock. Abe K; Kuroda A; Takeshita R Appl Microbiol Biotechnol; 2017 Mar; 101(5):2057-2066. PubMed ID: 27933453 [TBL] [Abstract][Full Text] [Related]
4. L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Félix FKDC; Letti LAJ; Vinícius de Melo Pereira G; Bonfim PGB; Soccol VT; Soccol CR Crit Rev Biotechnol; 2019 Dec; 39(8):1031-1055. PubMed ID: 31544527 [TBL] [Abstract][Full Text] [Related]
5. Metabolic Engineering of High L-Lysine-Producing Chen Y; Song W; Wang G; Wang Y; Dong S; Wu Y; Wang R; Ma C ACS Synth Biol; 2024 Sep; 13(9):2948-2959. PubMed ID: 39158285 [TBL] [Abstract][Full Text] [Related]
6. [Metabolic engineering of Liu C; Gao C; Li X; Chen X; Wu J; Song W; Wei W; Liu L Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2403-2417. PubMed ID: 39174461 [TBL] [Abstract][Full Text] [Related]
7. [Metabolic engineering of Yao Z; Li R; Jiang S; Wu H; Ma Q; Xie X Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2432-2443. PubMed ID: 39174463 [TBL] [Abstract][Full Text] [Related]
8. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Hao Y; Ma Q; Liu X; Fan X; Men J; Wu H; Jiang S; Tian D; Xiong B; Xie X Metab Eng; 2020 Nov; 62():198-206. PubMed ID: 32961297 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
10. High-level and -yield orotic acid production in Escherichia coli through systematic modular engineering and "Chaos to Order Cycles" fermentation. Li C; Shi T; Fan W; Yuan M; Li L; Yu Z; Chen Z; Xu Q Bioresour Technol; 2024 Nov; 411():131345. PubMed ID: 39182798 [TBL] [Abstract][Full Text] [Related]
11. Increasing Agmatine Production in Xu D; Zhang L J Agric Food Chem; 2019 Jul; 67(28):7908-7915. PubMed ID: 31268314 [TBL] [Abstract][Full Text] [Related]
12. Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Kumar R; Shimizu K Microb Cell Fact; 2010 Jan; 9():8. PubMed ID: 20105320 [TBL] [Abstract][Full Text] [Related]
13. Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies. Zou S; Zhao K; Tang H; Zhang Z; Zhang B; Liu Z; Zheng Y J Biotechnol; 2021 Sep; 339():65-72. PubMed ID: 34352344 [TBL] [Abstract][Full Text] [Related]
14. An economically and environmentally acceptable synthesis of chiral drug intermediate L-pipecolic acid from biomass-derived lysine via artificially engineered microbes. Cheng J; Huang Y; Mi L; Chen W; Wang D; Wang Q J Ind Microbiol Biotechnol; 2018 Jun; 45(6):405-415. PubMed ID: 29749580 [TBL] [Abstract][Full Text] [Related]
15. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum. Xu JZ; Wu ZH; Gao SJ; Zhang W Microb Cell Fact; 2018 Jul; 17(1):105. PubMed ID: 29981572 [TBL] [Abstract][Full Text] [Related]
16. Systems engineering of Escherichia coli for high-level shikimate production. Li Z; Gao C; Ye C; Guo L; Liu J; Chen X; Song W; Wu J; Liu L Metab Eng; 2023 Jan; 75():1-11. PubMed ID: 36328295 [TBL] [Abstract][Full Text] [Related]
17. Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine. Tani Y; Miyake R; Yukami R; Dekishima Y; China H; Saito S; Kawabata H; Mihara H Appl Microbiol Biotechnol; 2015 Jun; 99(12):5045-54. PubMed ID: 25547835 [TBL] [Abstract][Full Text] [Related]
18. Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering. Zhang K; Qin M; Hou Y; Zhang W; Wang Z; Wang H Microb Cell Fact; 2024 Jun; 23(1):182. PubMed ID: 38898430 [TBL] [Abstract][Full Text] [Related]
19. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related]
20. [Metabolic engineering of Liu J; Gao C; Chen X; Guo L; Song W; Wu J; Wei W; Liu J; Liu L Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2375-2389. PubMed ID: 37401599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]