These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 39174579)
1. The use of hyaluronic acid in a 3D biomimetic scaffold supports spheroid formation and the culture of cancer stem cells. Demirel G; Cakıl YD; Koltuk G; Aktas RG; Calıskan M Sci Rep; 2024 Aug; 14(1):19560. PubMed ID: 39174579 [TBL] [Abstract][Full Text] [Related]
2. Microporous cellulosic scaffold as a spheroid culture system modulates chemotherapeutic responses and stemness in hepatocellular carcinoma. Wu G; Zhan S; Rui C; Sho E; Shi X; Ding Y J Cell Biochem; 2019 Apr; 120(4):5244-5255. PubMed ID: 30302811 [TBL] [Abstract][Full Text] [Related]
3. 3D culture of alginate-hyaluronic acid hydrogel supports the stemness of human mesenchymal stem cells. Pangjantuk A; Kaokaen P; Kunhorm P; Chaicharoenaudomrung N; Noisa P Sci Rep; 2024 Feb; 14(1):4436. PubMed ID: 38396088 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional constructs using hyaluronan cell carrier as a tool for the study of cancer stem cells. Martínez-Ramos C; Lebourg M J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1249-57. PubMed ID: 25350680 [TBL] [Abstract][Full Text] [Related]
5. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917 [TBL] [Abstract][Full Text] [Related]
6. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation. Jiang T; Munguia-Lopez J; Flores-Torres S; Grant J; Vijayakumar S; De Leon-Rodriguez A; Kinsella JM J Vis Exp; 2018 Jul; (137):. PubMed ID: 30010644 [TBL] [Abstract][Full Text] [Related]
7. Cancer stem cells as a therapeutic target in 3D tumor models of human chondrosarcoma: An encouraging future for proline rich polypeptide‑1. Granger CJ; Hoyt AK; Moran A; Becker B; Sedani A; Saigh S; Conway SA; Brown J; Galoian K Mol Med Rep; 2020 Nov; 22(5):3747-3758. PubMed ID: 32901865 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. Law N; Doney B; Glover H; Qin Y; Aman ZM; Sercombe TB; Liew LJ; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Jan; 77():389-399. PubMed ID: 29017117 [TBL] [Abstract][Full Text] [Related]
9. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
10. Ready to go 3D? A semi-automated protocol for microwell spheroid arrays to increase scalability and throughput of 3D cell culture testing. Basu A; Dydowiczová A; Trosko JE; Bláha L; Babica P Toxicol Mech Methods; 2020 Oct; 30(8):590-604. PubMed ID: 32713235 [TBL] [Abstract][Full Text] [Related]
11. A novel platform for drug testing: Biomimetic three-dimensional hyaluronic acid-based scaffold seeded with human hepatocarcinoma cells. Turtoi M; Anghelache M; Bucatariu SM; Deleanu M; Voicu G; Safciuc F; Manduteanu I; Fundueanu G; Simionescu M; Calin M Int J Biol Macromol; 2021 Aug; 185():604-619. PubMed ID: 34216662 [TBL] [Abstract][Full Text] [Related]
12. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Xu K; Narayanan K; Lee F; Bae KH; Gao S; Kurisawa M Acta Biomater; 2015 Sep; 24():159-71. PubMed ID: 26112373 [TBL] [Abstract][Full Text] [Related]
13. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564 [TBL] [Abstract][Full Text] [Related]
14. Enrichment of glioma stem cell-like cells on 3D porous scaffolds composed of different extracellular matrix. Wang X; Dai X; Zhang X; Li X; Xu T; Lan Q Biochem Biophys Res Commun; 2018 Apr; 498(4):1052-1057. PubMed ID: 29551682 [TBL] [Abstract][Full Text] [Related]
15. Characterization and printability of Sodium alginate -Gelatin hydrogel for bioprinting NSCLC co-culture. Mondal A; Gebeyehu A; Miranda M; Bahadur D; Patel N; Ramakrishnan S; Rishi AK; Singh M Sci Rep; 2019 Dec; 9(1):19914. PubMed ID: 31882581 [TBL] [Abstract][Full Text] [Related]
16. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Olate-Moya F; Rubí-Sans G; Engel E; Mateos-Timoneda MÁ; Palza H Biomacromolecules; 2024 Jun; 25(6):3312-3324. PubMed ID: 38728671 [TBL] [Abstract][Full Text] [Related]
18. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
19. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Wang X; Wang M; Xu Y; Yin J; Hu J Int J Biol Macromol; 2024 Jun; 271(Pt 1):131980. PubMed ID: 38821790 [TBL] [Abstract][Full Text] [Related]
20. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Dai X; Ma C; Lan Q; Xu T Biofabrication; 2016 Oct; 8(4):045005. PubMed ID: 27725343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]