These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 39175033)

  • 1. Assessing Axillary Lymph Node Burden and Prognosis in cT1-T2 Stage Breast Cancer Using Machine Learning Methods: A Retrospective Dual-Institutional MRI Study.
    Liao J; Xu Z; Xie Y; Liang Y; Hu Q; Liu C; Yan L; Diao W; Liu Z; Wu L; Liang C
    J Magn Reson Imaging; 2024 Aug; ():. PubMed ID: 39175033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Machine Learning Methods to Assess Lymphovascular Invasion and Survival in Breast Cancer: Performance of Combining Preoperative Clinical and MRI Characteristics.
    Xu Z; Xie Y; Wu L; Chen M; Shi Z; Cui Y; Han C; Lin H; Liu Y; Li P; Chen X; Ding Y; Liu Z
    J Magn Reson Imaging; 2023 Nov; 58(5):1580-1589. PubMed ID: 36797654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study.
    Xu Z; Ding Y; Zhao K; Han C; Shi Z; Cui Y; Liu C; Lin H; Pan X; Li P; Chen M; Wang H; Deng X; Liang C; Xie Y; Liu Z
    Eur Radiol; 2022 Dec; 32(12):8213-8225. PubMed ID: 35704112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.
    Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M
    J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MRI-Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN-RNN Model.
    Guo YJ; Yin R; Zhang Q; Han JQ; Dou ZX; Wang PB; Lu H; Liu PF; Chen JJ; Ma WJ
    J Magn Reson Imaging; 2024 Oct; 60(4):1352-1364. PubMed ID: 38205712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preoperative Evaluation of Gd-EOB-DTPA-Enhanced MRI Radiomics-Based Nomogram in Small Solitary Hepatocellular Carcinoma (≤3 cm) With Microvascular Invasion: A Two-Center Study.
    Tian Y; Hua H; Peng Q; Zhang Z; Wang X; Han J; Ma W; Chen J
    J Magn Reson Imaging; 2022 Nov; 56(5):1459-1472. PubMed ID: 35298849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer.
    Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X
    J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Tumor-Infiltrating Lymphocytes in Breast Cancer Using Preoperative MRI-Based Radiomics.
    Bian T; Wu Z; Lin Q; Mao Y; Wang H; Chen J; Chen Q; Fu G; Cui C; Su X
    J Magn Reson Imaging; 2022 Mar; 55(3):772-784. PubMed ID: 34453461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of High-Risk Cytogenetic Status in Multiple Myeloma Based on Magnetic Resonance Imaging: Utility of Radiomics and Comparison of Machine Learning Methods.
    Liu J; Zeng P; Guo W; Wang C; Geng Y; Lang N; Yuan H
    J Magn Reson Imaging; 2021 Oct; 54(4):1303-1311. PubMed ID: 33979466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI.
    Wang Z; Sun H; Li J; Chen J; Meng F; Li H; Han L; Zhou S; Yu T
    J Magn Reson Imaging; 2022 Sep; 56(3):700-709. PubMed ID: 35108415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MRI-Based Radiomic Nomogram for Discrimination Between Malignant and Benign Sinonasal Tumors.
    Zhang H; Wang H; Hao D; Ge Y; Wan G; Zhang J; Liu S; Zhang Y; Xu D
    J Magn Reson Imaging; 2021 Jan; 53(1):141-151. PubMed ID: 32776393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach.
    Liu J; Li X; Wang G; Zeng W; Zeng H; Wen C; Xu W; He Z; Qin G; Chen W
    J Magn Reson Imaging; 2025 Jan; 61(1):184-197. PubMed ID: 38850180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer.
    Liu H; Yin H; Li J; Dong X; Zheng H; Zhang T; Yin Q; Zhang Z; Lu M; Zhang H; Wang D
    J Magn Reson Imaging; 2022 Dec; 56(6):1659-1668. PubMed ID: 35587946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study.
    Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J
    BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an MRI-Based Comprehensive Model Fusing Clinical, Radiomics and Deep Learning Models for Preoperative Histological Stratification in Intracranial Solitary Fibrous Tumor.
    Liang X; Tang K; Ke X; Jiang J; Li S; Xue C; Deng J; Liu X; Yan C; Gao M; Zhou J; Zhao L
    J Magn Reson Imaging; 2024 Aug; 60(2):523-533. PubMed ID: 37897302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Machine Learning-Based Unenhanced Radiomics Approach to Distinguishing Between Benign and Malignant Breast Lesions Using T2-Weighted and Diffusion-Weighted MRI.
    Liu Y; Jia X; Zhao J; Peng Y; Yao X; Hu X; Cui J; Chen H; Chen X; Wu J; Hong N; Wang S; Wang Y
    J Magn Reson Imaging; 2024 Aug; 60(2):600-612. PubMed ID: 37933890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peritumoral and Intratumoral Texture Features Based on Multiparametric MRI and Multiple Machine Learning Methods to Preoperatively Evaluate the Pathological Outcomes of Pancreatic Cancer.
    Xie N; Fan X; Chen D; Chen J; Yu H; He M; Liu H; Yin X; Li B; Wang H
    J Magn Reson Imaging; 2023 Aug; 58(2):379-391. PubMed ID: 36426965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.