These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 39175133)
1. HTINet2: herb-target prediction via knowledge graph embedding and residual-like graph neural network. Duan P; Yang K; Su X; Fan S; Dong X; Zhang F; Li X; Xing X; Zhu Q; Yu J; Zhou X Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39175133 [TBL] [Abstract][Full Text] [Related]
2. Multi-target meridians classification based on the topological structure of anti-cancer phytochemicals using deep learning. Zhang S; Zhang X; Du J; Wang W; Pi X J Ethnopharmacol; 2024 Jan; 319(Pt 2):117244. PubMed ID: 37777031 [TBL] [Abstract][Full Text] [Related]
3. Constructing a screening model to obtain the functional herbs for the treatment of active ulcerative colitis based on herb-compound-target network and immuno-infiltration analysis. Ou H; Ye X; Huang H; Cheng H Naunyn Schmiedebergs Arch Pharmacol; 2024 Jul; 397(7):4693-4711. PubMed ID: 38117365 [TBL] [Abstract][Full Text] [Related]
4. TCM herbal prescription recommendation model based on multi-graph convolutional network. Zhao W; Lu W; Li Z; Zhou C; Fan H; Yang Z; Lin X; Li C J Ethnopharmacol; 2022 Oct; 297():115109. PubMed ID: 35227780 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous network propagation for herb target identification. Yang K; Liu G; Wang N; Zhang R; Yu J; Chen J; Zhou X BMC Med Inform Decis Mak; 2018 Mar; 18(Suppl 1):17. PubMed ID: 29589568 [TBL] [Abstract][Full Text] [Related]
6. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Qu X; Du G; Hu J; Cai Y Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360 [TBL] [Abstract][Full Text] [Related]
7. A Semantic Analysis and Community Detection-Based Artificial Intelligence Model for Core Herb Discovery from the Literature: Taking Chronic Glomerulonephritis Treatment as a Case Study. Zhang Y; Liu Y; Zhu J; Zhai S; Jin R; Wen C Comput Math Methods Med; 2020; 2020():1862168. PubMed ID: 32952598 [TBL] [Abstract][Full Text] [Related]
8. Multi-layer information fusion based on graph convolutional network for knowledge-driven herb recommendation. Yang Y; Rao Y; Yu M; Kang Y Neural Netw; 2022 Feb; 146():1-10. PubMed ID: 34826774 [TBL] [Abstract][Full Text] [Related]
9. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
10. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624 [TBL] [Abstract][Full Text] [Related]
11. PresRecRF: Herbal prescription recommendation via the representation fusion of large TCM semantics and molecular knowledge. Yang K; Dong X; Zhang S; Yu H; Zhong L; Zhang L; Zhao H; Hou Y; Song X; Zhou X Phytomedicine; 2024 Oct; 135():156116. PubMed ID: 39396402 [TBL] [Abstract][Full Text] [Related]
12. SMRGAT: A traditional Chinese herb recommendation model based on a multi-graph residual attention network and semantic knowledge fusion. Yang X; Ding C J Ethnopharmacol; 2023 Oct; 315():116693. PubMed ID: 37257707 [TBL] [Abstract][Full Text] [Related]
13. Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding. Liu Y; Lim H; Xie L BMC Bioinformatics; 2022 May; 23(Suppl 3):158. PubMed ID: 35501680 [TBL] [Abstract][Full Text] [Related]
14. Signaling repurposable drug combinations against COVID-19 by developing the heterogeneous deep herb-graph method. Yang F; Zhang S; Pan W; Yao R; Zhang W; Zhang Y; Wang G; Zhang Q; Cheng Y; Dong J; Ruan C; Cui L; Wu H; Xue F Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514205 [TBL] [Abstract][Full Text] [Related]
15. Deep semi-supervised learning via dynamic anchor graph embedding in latent space. Tu E; Wang Z; Yang J; Kasabov N Neural Netw; 2022 Feb; 146():350-360. PubMed ID: 34929418 [TBL] [Abstract][Full Text] [Related]
16. KAMPNet: multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning. An Y; Tang H; Jin B; Xu Y; Wei X BMC Med Inform Decis Mak; 2023 Oct; 23(1):243. PubMed ID: 37904198 [TBL] [Abstract][Full Text] [Related]
17. Network-based modeling of herb combinations in traditional Chinese medicine. Wang Y; Yang H; Chen L; Jafari M; Tang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834186 [TBL] [Abstract][Full Text] [Related]
18. A deep learning framework for predicting disease-gene associations with functional modules and graph augmentation. Jia X; Luo W; Li J; Xing J; Sun H; Wu S; Su X BMC Bioinformatics; 2024 Jun; 25(1):214. PubMed ID: 38877401 [TBL] [Abstract][Full Text] [Related]
19. Co-Embedding of Nodes and Edges With Graph Neural Networks. Jiang X; Zhu R; Ji P; Li S IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7075-7086. PubMed ID: 33052851 [TBL] [Abstract][Full Text] [Related]