These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39175460)
1. Coordinated metabolic adaptation of Arabidopsis thaliana to high light. Balcke GU; Vahabi K; Giese J; Finkemeier I; Tissier A Plant J; 2024 Oct; 120(1):387-405. PubMed ID: 39175460 [TBL] [Abstract][Full Text] [Related]
2. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana. Vishwakarma A; Bashyam L; Senthilkumaran B; Scheibe R; Padmasree K Plant Physiol Biochem; 2014 Aug; 81():44-53. PubMed ID: 24560882 [TBL] [Abstract][Full Text] [Related]
3. The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Page M; Sultana N; Paszkiewicz K; Florance H; Smirnoff N Plant Cell Environ; 2012 Feb; 35(2):388-404. PubMed ID: 21631536 [TBL] [Abstract][Full Text] [Related]
4. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response. Müller SM; Wang S; Telman W; Liebthal M; Schnitzer H; Viehhauser A; Sticht C; Delatorre C; Wirtz M; Hell R; Dietz KJ Plant J; 2017 Sep; 91(6):995-1014. PubMed ID: 28644561 [TBL] [Abstract][Full Text] [Related]
5. Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Dyson BC; Allwood JW; Feil R; Xu Y; Miller M; Bowsher CG; Goodacre R; Lunn JE; Johnson GN Plant Cell Environ; 2015 Jul; 38(7):1404-17. PubMed ID: 25474495 [TBL] [Abstract][Full Text] [Related]
6. Time-series transcriptomics reveals a BBX32-directed control of acclimation to high light in mature Arabidopsis leaves. Alvarez-Fernandez R; Penfold CA; Galvez-Valdivieso G; Exposito-Rodriguez M; Stallard EJ; Bowden L; Moore JD; Mead A; Davey PA; Matthews JSA; Beynon J; Buchanan-Wollaston V; Wild DL; Lawson T; Bechtold U; Denby KJ; Mullineaux PM Plant J; 2021 Sep; 107(5):1363-1386. PubMed ID: 34160110 [TBL] [Abstract][Full Text] [Related]
7. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. Schmitz J; Heinrichs L; Scossa F; Fernie AR; Oelze ML; Dietz KJ; Rothbart M; Grimm B; Flügge UI; Häusler RE J Exp Bot; 2014 Apr; 65(6):1619-36. PubMed ID: 24523502 [TBL] [Abstract][Full Text] [Related]
8. Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis. Bode R; Ivanov AG; Hüner NP Photosynth Res; 2016 Jun; 128(3):287-312. PubMed ID: 27021769 [TBL] [Abstract][Full Text] [Related]
9. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Suorsa M; Järvi S; Grieco M; Nurmi M; Pietrzykowska M; Rantala M; Kangasjärvi S; Paakkarinen V; Tikkanen M; Jansson S; Aro EM Plant Cell; 2012 Jul; 24(7):2934-48. PubMed ID: 22822205 [TBL] [Abstract][Full Text] [Related]
10. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. Timm S; Mielewczik M; Florian A; Frankenbach S; Dreissen A; Hocken N; Fernie AR; Walter A; Bauwe H PLoS One; 2012; 7(8):e42809. PubMed ID: 22912743 [TBL] [Abstract][Full Text] [Related]
11. Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana. Schmitz J; Schöttler MA; Krueger S; Geimer S; Schneider A; Kleine T; Leister D; Bell K; Flügge UI; Häusler RE BMC Plant Biol; 2012 Jan; 12():8. PubMed ID: 22248311 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of a core set of ROS wave-associated transcripts involved in the systemic acquired acclimation response of Arabidopsis to excess light. Zandalinas SI; Sengupta S; Burks D; Azad RK; Mittler R Plant J; 2019 Apr; 98(1):126-141. PubMed ID: 30556340 [TBL] [Abstract][Full Text] [Related]
13. A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis. Albrecht-Borth V; Kauss D; Fan D; Hu Y; Collinge D; Marri S; Liebers M; Apel K; Pfannschmidt T; Chow WS; Pogson BJ Plant Physiol; 2013 Oct; 163(2):732-45. PubMed ID: 23940253 [TBL] [Abstract][Full Text] [Related]
14. Subcellular dynamics of proteins and metabolites under abiotic stress reveal deferred response of the Arabidopsis thaliana hexokinase-1 mutant gin2-1 to high light. Küstner L; Fürtauer L; Weckwerth W; Nägele T; Heyer AG Plant J; 2019 Nov; 100(3):456-472. PubMed ID: 31386774 [TBL] [Abstract][Full Text] [Related]
15. Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism. Lee K; Lehmann M; Paul MV; Wang L; Luckner M; Wanner G; Geigenberger P; Leister D; Kleine T New Phytol; 2020 Feb; 225(4):1715-1731. PubMed ID: 31596965 [TBL] [Abstract][Full Text] [Related]
16. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions. Thormählen I; Meitzel T; Groysman J; Öchsner AB; von Roepenack-Lahaye E; Naranjo B; Cejudo FJ; Geigenberger P Plant Physiol; 2015 Nov; 169(3):1766-86. PubMed ID: 26338951 [TBL] [Abstract][Full Text] [Related]
17. Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Courteille A; Vesa S; Sanz-Barrio R; Cazalé AC; Becuwe-Linka N; Farran I; Havaux M; Rey P; Rumeau D Plant Physiol; 2013 Jan; 161(1):508-20. PubMed ID: 23151348 [TBL] [Abstract][Full Text] [Related]
18. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Wallström SV; Florez-Sarasa I; Araújo WL; Escobar MA; Geisler DA; Aidemark M; Lager I; Fernie AR; Ribas-Carbó M; Rasmusson AG Plant Cell Physiol; 2014 May; 55(5):881-96. PubMed ID: 24486764 [TBL] [Abstract][Full Text] [Related]
19. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis. Noshi M; Hatanaka R; Tanabe N; Terai Y; Maruta T; Shigeoka S Biosci Biotechnol Biochem; 2016 May; 80(5):870-7. PubMed ID: 26927949 [TBL] [Abstract][Full Text] [Related]
20. Effect of high-intensity light and UV-B on photosynthetic activity and the expression of certain light-responsive genes in A. thaliana phyA and phyB mutants. Kreslavski VD; Strokina VV; Khudyakova AY; Shirshikova GN; Kosobryukhov AA; Pashkovskiy PP; Alwasel S; Allakhverdiev SI Biochim Biophys Acta Bioenerg; 2021 Aug; 1862(8):148445. PubMed ID: 33940040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]