These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 39176414)

  • 1. Modeling free tumor growth: Discrete, continuum, and hybrid approaches to interpreting cancer development.
    Singh D; Paquin D
    Math Biosci Eng; 2024 Jul; 21(7):6659-6693. PubMed ID: 39176414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid multiscale modeling and prediction of cancer cell behavior.
    Zangooei MH; Habibi J
    PLoS One; 2017; 12(8):e0183810. PubMed ID: 28846712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study.
    Antonopoulos M; Dionysiou D; Stamatakos G; Uzunoglu N
    BMC Bioinformatics; 2019 Aug; 20(1):442. PubMed ID: 31455206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in silico hybrid continuum-/agent-based procedure to modelling cancer development: Interrogating the interplay amongst glioma invasion, vascularity and necrosis.
    de Montigny J; Iosif A; Breitwieser L; Manca M; Bauer R; Vavourakis V
    Methods; 2021 Jan; 185():94-104. PubMed ID: 31981608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient coarse simulation of a growing avascular tumor.
    Kavousanakis ME; Liu P; Boudouvis AG; Lowengrub J; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031912. PubMed ID: 22587128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive oncology: a review of multidisciplinary, multiscale in silico modeling linking phenotype, morphology and growth.
    Sanga S; Frieboes HB; Zheng X; Gatenby R; Bearer EL; Cristini V
    Neuroimage; 2007; 37 Suppl 1(Suppl 1):S120-34. PubMed ID: 17629503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico modeling for tumor growth visualization.
    Jeanquartier F; Jean-Quartier C; Cemernek D; Holzinger A
    BMC Syst Biol; 2016 Aug; 10(1):59. PubMed ID: 27503052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stem Cell Plasticity and Niche Dynamics in Cancer Progression.
    Picco N; Gatenby RA; Anderson ARA
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):528-537. PubMed ID: 28113244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid models of cell and tissue dynamics in tumor growth.
    Kim Y; Othmer HG
    Math Biosci Eng; 2015 Dec; 12(6):1141-56. PubMed ID: 26775860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating cancer growth with multiscale agent-based modeling.
    Wang Z; Butner JD; Kerketta R; Cristini V; Deisboeck TS
    Semin Cancer Biol; 2015 Feb; 30():70-8. PubMed ID: 24793698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid models of tumor growth.
    Rejniak KA; Anderson AR
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(1):115-25. PubMed ID: 21064037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.
    Lyu J; Cao J; Zhang P; Liu Y; Cheng H
    PLoS One; 2016; 11(10):e0163173. PubMed ID: 27701426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumor to chemotherapy: Mimicking a clinical study.
    Stamatakos GS; Kolokotroni EA; Dionysiou DD; Georgiadi ECh; Desmedt C
    J Theor Biol; 2010 Sep; 266(1):124-39. PubMed ID: 20515697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios.
    Valentim CA; Rabi JA; David SA
    Comput Biol Med; 2023 Feb; 153():106481. PubMed ID: 36587567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico cancer research towards 3R.
    Jean-Quartier C; Jeanquartier F; Jurisica I; Holzinger A
    BMC Cancer; 2018 Apr; 18(1):408. PubMed ID: 29649981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors.
    Jiménez-Sánchez J; Martínez-Rubio Á; Popov A; Pérez-Beteta J; Azimzade Y; Molina-García D; Belmonte-Beitia J; Calvo GF; Pérez-García VM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008266. PubMed ID: 33566821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid mathematical model of glioma progression.
    Tanaka ML; Debinski W; Puri IK
    Cell Prolif; 2009 Oct; 42(5):637-46. PubMed ID: 19624684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic and chaotic dynamics in a map-based model of tumor-immune interaction.
    Moghtadaei M; Hashemi Golpayegani MR; Malekzadeh R
    J Theor Biol; 2013 Oct; 334():130-40. PubMed ID: 23770106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A scalable solver for a stochastic, hybrid cellular automaton model of personalized breast cancer therapy.
    Lai X; Taskén HA; Mo T; Funke SW; Frigessi A; Rognes ME; Köhn-Luque A
    Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3542. PubMed ID: 34716985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.