These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39176471)

  • 1. Three-Dimensional Lymphatics-on-a-Chip Reveals Distinct, Size-Dependent Nanoparticle Transport Mechanisms in Lymphatic Drug Delivery.
    Lu R; Lee BJ; Lee E
    ACS Biomater Sci Eng; 2024 Sep; 10(9):5752-5763. PubMed ID: 39176471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes.
    McCright J; Skeen C; Yarmovsky J; Maisel K
    Acta Biomater; 2022 Jun; 145():146-158. PubMed ID: 35381399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors.
    Luo G; Yu X; Jin C; Yang F; Fu D; Long J; Xu J; Zhan C; Lu W
    Int J Pharm; 2010 Jan; 385(1-2):150-6. PubMed ID: 19825404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.
    Huang WC; Burnouf PA; Su YC; Chen BM; Chuang KH; Lee CW; Wei PK; Cheng TL; Roffler SR
    ACS Nano; 2016 Jan; 10(1):648-62. PubMed ID: 26741147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform.
    Bao Y; Maeki M; Ishida A; Tani H; Tokeshi M
    PLoS One; 2022; 17(8):e0271050. PubMed ID: 35925917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
    Sims LB; Curtis LT; Frieboes HB; Steinbach-Rankins JM
    J Nanobiotechnology; 2016 Apr; 14():33. PubMed ID: 27102372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis.
    Ho YT; Kamm RD; Kah JCY
    Nanoscale; 2018 Jul; 10(26):12386-12397. PubMed ID: 29926047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles.
    Brandenberger C; Mühlfeld C; Ali Z; Lenz AG; Schmid O; Parak WJ; Gehr P; Rothen-Rutishauser B
    Small; 2010 Aug; 6(15):1669-78. PubMed ID: 20602428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional nanoplatform based on star-shaped copolymer for liver cancer targeting therapy.
    Gong X; Zheng Y; He G; Chen K; Zeng X; Chen Z
    Drug Deliv; 2019 Dec; 26(1):595-603. PubMed ID: 31195837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery.
    Lin WJ; Lee WC
    Int J Nanomedicine; 2018; 13():3989-4002. PubMed ID: 30022822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells.
    McCright J; Yarmovsky J; Maisel K
    Mol Pharm; 2024 Mar; 21(3):1160-1169. PubMed ID: 37851841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular Trafficking of Size-Tuned Nanoparticles for Drug Delivery.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    Int J Mol Sci; 2023 Dec; 25(1):. PubMed ID: 38203483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip.
    Kwak B; Ozcelikkale A; Shin CS; Park K; Han B
    J Control Release; 2014 Nov; 194():157-67. PubMed ID: 25194778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D biomimetic model of lymphatics reveals cell-cell junction tightening and lymphedema via a cytokine-induced ROCK2/JAM-A complex.
    Lee E; Chan SL; Lee Y; Polacheck WJ; Kwak S; Wen A; Nguyen DT; Kutys ML; Alimperti S; Kolarzyk AM; Kwak TJ; Eyckmans J; Bielenberg DR; Chen H; Chen CS
    Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2308941120. PubMed ID: 37782785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the size-dependent internalization of sub-hundred polymeric nanoparticles.
    Gimondi S; Vieira de Castro J; Reis RL; Ferreira H; Neves NM
    Colloids Surf B Biointerfaces; 2023 May; 225():113245. PubMed ID: 36905835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles.
    Elsewedy HS; Dhubiab BEA; Mahdy MA; Elnahas HM
    Drug Deliv; 2020 Dec; 27(1):1134-1146. PubMed ID: 32729331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations.
    Hu X; Yang F; Liao Y; Li L; Zhang L
    Drug Deliv; 2017 Nov; 24(1):121-132. PubMed ID: 28156159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration.
    Gracia G; Cao E; Feeney OM; Johnston APR; Porter CJH; Trevaskis NL
    Mol Pharm; 2020 Aug; 17(8):2938-2951. PubMed ID: 32543863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.