These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39176536)
1. Automatic Extraction of Medication Data from Semi-Structured Prescriptions. Oehm JB; Wenning O; Storck M; Jiang X; Varghese J Stud Health Technol Inform; 2024 Aug; 316():1694-1698. PubMed ID: 39176536 [TBL] [Abstract][Full Text] [Related]
2. FABLE: A Semi-Supervised Prescription Information Extraction System. Tao C; Filannino M; Uzuner Ö AMIA Annu Symp Proc; 2018; 2018():1534-1543. PubMed ID: 30815199 [TBL] [Abstract][Full Text] [Related]
3. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
4. Comparing information extraction techniques for low-prevalence concepts: The case of insulin rejection by patients. Malmasi S; Ge W; Hosomura N; Turchin A J Biomed Inform; 2019 Nov; 99():103306. PubMed ID: 31618679 [TBL] [Abstract][Full Text] [Related]
5. Extraction of UMLS® Concepts Using Apache cTAKES™ for German Language. Becker M; Böckmann B Stud Health Technol Inform; 2016; 223():71-6. PubMed ID: 27139387 [TBL] [Abstract][Full Text] [Related]
6. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
7. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related]
8. Using natural language processing to identify problem usage of prescription opioids. Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569 [TBL] [Abstract][Full Text] [Related]
9. Effect of EHR user interface changes on internal prescription discrepancies. Turchin A; Sawarkar A; Dementieva YA; Breydo E; Ramelson H Appl Clin Inform; 2014; 5(3):708-20. PubMed ID: 25298811 [TBL] [Abstract][Full Text] [Related]
10. Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and tri-training. Chen Y; Zhou C; Li T; Wu H; Zhao X; Ye K; Liao J J Biomed Inform; 2019 Aug; 96():103252. PubMed ID: 31323311 [TBL] [Abstract][Full Text] [Related]
11. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts. Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028 [TBL] [Abstract][Full Text] [Related]
12. Leveraging Rule-Based NLP to Translate Textual Reports as Structured Inputs Automatically Processed by a Clinical Decision Support System. Redjdal A; Novikava N; Kempf E; Bouaud J; Seroussi B Stud Health Technol Inform; 2024 Aug; 316():1861-1865. PubMed ID: 39176854 [TBL] [Abstract][Full Text] [Related]
13. A Comprehensive Natural Language Processing Pipeline for the Chronic Lupus Disease. Lilli L; Bosello SL; Antenucci L; Patarnello S; Ortolan A; Lenkowicz J; Gorini M; Castellino G; Cesario A; D'Agostino MA; Masciocchi C Stud Health Technol Inform; 2024 Aug; 316():909-913. PubMed ID: 39176940 [TBL] [Abstract][Full Text] [Related]
14. Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database. Karystianis G; Sheppard T; Dixon WG; Nenadic G BMC Med Inform Decis Mak; 2016 Feb; 16():18. PubMed ID: 26860263 [TBL] [Abstract][Full Text] [Related]
15. Improving textual medication extraction using combined conditional random fields and rule-based systems. Tikk D; Solt I J Am Med Inform Assoc; 2010; 17(5):540-4. PubMed ID: 20819860 [TBL] [Abstract][Full Text] [Related]
16. Identifying Suicide Ideation and Suicidal Attempts in a Psychiatric Clinical Research Database using Natural Language Processing. Fernandes AC; Dutta R; Velupillai S; Sanyal J; Stewart R; Chandran D Sci Rep; 2018 May; 8(1):7426. PubMed ID: 29743531 [TBL] [Abstract][Full Text] [Related]
17. De-identifying free text of Japanese electronic health records. Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039 [TBL] [Abstract][Full Text] [Related]
18. Use of text-mining methods to improve efficiency in the calculation of drug exposure to support pharmacoepidemiology studies. McTaggart S; Nangle C; Caldwell J; Alvarez-Madrazo S; Colhoun H; Bennie M Int J Epidemiol; 2018 Apr; 47(2):617-624. PubMed ID: 29420741 [TBL] [Abstract][Full Text] [Related]
19. Data governance and Gensini score automatic calculation for coronary angiography with deep-learning-based natural language extraction. Li F; Jiang M; Xu H; Chen Y; Chen F; Nie W; Wang L Math Biosci Eng; 2024 Feb; 21(3):4085-4103. PubMed ID: 38549319 [TBL] [Abstract][Full Text] [Related]
20. Extracting important information from Chinese Operation Notes with natural language processing methods. Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]