BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3917690)

  • 1. Differential association of the different brain microtubule proteins in different in vitro assembly conditions.
    Díez JC; de la Torre J; Avila J
    Biochim Biophys Acta; 1985 Jan; 838(1):32-8. PubMed ID: 3917690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purified native microtubule associated protein MAP1A: kinetics of microtubule assembly and MAP1A/tubulin stoichiometry.
    Pedrotti B; Islam K
    Biochemistry; 1994 Oct; 33(41):12463-70. PubMed ID: 7918469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulphonate buffers affect the recovery of microtubule-associated proteins MAP1 and MAP2: evidence that MAP1A promotes microtubule assembly.
    Pedrotti B; Soffientini A; Islam K
    Cell Motil Cytoskeleton; 1993; 25(3):234-42. PubMed ID: 8221901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerization in vitro.
    Herzog W; Weber K
    Eur J Biochem; 1978 Dec; 92(1):1-8. PubMed ID: 729584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of the in vitro polymerization of tubulin in the presence of the microtubule-associated proteins MAP2 and tau.
    Sandoval IV; Vandekerckhove JS
    J Biol Chem; 1981 Aug; 256(16):8795-800. PubMed ID: 7263687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different tubulin polymers are produced by microtubule-associated proteins MAP2 and tau in the presence of guanosine 5'-(alpha, beta-methylene)triphosphate.
    Sandoval IV; Weber K
    J Biol Chem; 1980 Oct; 255(19):8952-4. PubMed ID: 6773956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of calmodulin-induced inhibition of microtubule assembly in vitro.
    Kumagai H; Nishida E; Kotani S; Sakai H
    J Biochem; 1986 Feb; 99(2):521-5. PubMed ID: 3084465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2:tubulin interaction.
    Burns RG; Islam K; Chapman R
    Eur J Biochem; 1984 Jun; 141(3):609-15. PubMed ID: 6146522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAP2 competes with MAP1 for binding to microtubules.
    Kuznetsov SA; Rodionov VI; Gelfand VI; Rosenblat VA
    Biochem Biophys Res Commun; 1984 Feb; 119(1):173-8. PubMed ID: 6704120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of methods for the in vitro assembly of postmortem human brain microtubules that retain the microtubule-associated protein tau.
    Sparkman DR
    J Neurosci Methods; 1992; 45(1-2):41-53. PubMed ID: 1491596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of tubulin and tau from chicken erythrocytes: tubulin isotypes and mechanisms of microtubule assembly.
    Murphy DB
    Methods Enzymol; 1991; 196():235-46. PubMed ID: 1903496
    [No Abstract]   [Full Text] [Related]  

  • 12. A strongly basic protein of the MAP2 family copolymerizes with tubulin and induces polymerization.
    Nguyen M; Fasold H
    J Protein Chem; 1991 Oct; 10(5):511-6. PubMed ID: 1799409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vanadate on the assembly and disassembly of purified tubulin.
    Kirazov EP; Weiss DG
    Cell Motil Cytoskeleton; 1986; 6(3):314-23. PubMed ID: 3638162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of Atlantic cod (Gadus morhua) brain microtubules at different temperatures: dependency of microtubule-associated proteins is relative to temperature.
    Wallin M; Billger M; Strömberg T; Strömberg E
    Arch Biochem Biophys; 1993 Nov; 307(1):200-5. PubMed ID: 8239657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular weight dependency of heparin inhibition of microtubule assembly in vitro.
    Deinum J; Sörskog L; Wallin M; Dahlbäck J
    Biochim Biophys Acta; 1984 Nov; 802(1):41-8. PubMed ID: 6148967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of microtubule protein from chicken erythrocytes and determination of the critical concentration for tubulin polymerization in vitro and in vivo.
    Murphy DB; Wallis KT
    J Biol Chem; 1983 Jul; 258(13):8357-64. PubMed ID: 6863292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC
    Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin.
    Boucher D; Larcher JC; Gros F; Denoulet P
    Biochemistry; 1994 Oct; 33(41):12471-7. PubMed ID: 7522559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The localization of tau proteins on the microtubule surface.
    de la Torre J; Carrascosa JL; Avila J
    Eur J Cell Biol; 1986 Apr; 40(2):233-7. PubMed ID: 3086098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different assembly properties of cod, bovine, and rat brain microtubules.
    Fridén B; Strömberg E; Wallin M
    Cell Motil Cytoskeleton; 1992; 21(4):305-12. PubMed ID: 1628326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.