These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39177050)

  • 1. Microcrack behavior in bone: Stress field analysis at osteon cement line tips.
    Ji C; Yang X; Zhang L; Chen X; Sun Y; Lin B
    Proc Inst Mech Eng H; 2024; 238(8-9):909-921. PubMed ID: 39177050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interface damage model that captures crack propagation at the microscale in cortical bone using XFEM.
    Gustafsson A; Khayyeri H; Wallin M; Isaksson H
    J Mech Behav Biomed Mater; 2019 Feb; 90():556-565. PubMed ID: 30472565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack propagation in cortical bone is affected by the characteristics of the cement line: a parameter study using an XFEM interface damage model.
    Gustafsson A; Wallin M; Khayyeri H; Isaksson H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1247-1261. PubMed ID: 30963356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteonal crack barriers in ovine compact bone.
    Mohsin S; O'Brien FJ; Lee TC
    J Anat; 2006 Jan; 208(1):81-9. PubMed ID: 16420381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis on multi-toughening mechanism of microstructure of osteon.
    Yin D; Chen B; Lin S
    J Mech Behav Biomed Mater; 2021 May; 117():104408. PubMed ID: 33657473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related properties at the microscale affect crack propagation in cortical bone.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2019 Oct; 95():109326. PubMed ID: 31526587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of microstructure and microcrack growth in cortical bone: a finite element study.
    Mischinski S; Ural A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):81-94. PubMed ID: 21970670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components.
    Allahyari P; Silani M; Yaghoubi V; Milovanovic P; Schmidt FN; Busse B; Qwamizadeh M
    J Mech Behav Biomed Mater; 2023 Jan; 137():105530. PubMed ID: 36334581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of increased intracortical remodeling on microcrack behaviour in compact bone.
    Kennedy OD; Brennan O; Mauer P; Rackard SM; O'Brien FJ; Taylor D; Lee TC
    Bone; 2008 Nov; 43(5):889-93. PubMed ID: 18706535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.
    Kennedy OD; Brennan O; Mauer P; O'Brien FJ; Rackard SM; Taylor D; Lee TC
    Stud Health Technol Inform; 2008; 133():148-55. PubMed ID: 18376023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture behavior of human cortical bone: Role of advanced glycation end-products and microstructural features.
    Maghami E; Josephson TO; Moore JP; Rezaee T; Freeman TA; Karim L; Najafi AR
    J Biomech; 2021 Aug; 125():110600. PubMed ID: 34246065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A crack model of a bone cement interface.
    Clech JP; Keer LM; Lewis JL
    J Biomech Eng; 1984 Aug; 106(3):235-43. PubMed ID: 6492769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteonal effects on elastic modulus and fatigue life in equine bone.
    Gibson VA; Stover SM; Gibeling JC; Hazelwood SJ; Martin RB
    J Biomech; 2006; 39(2):217-25. PubMed ID: 16321623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue aging affects mineralization of cement lines.
    Milovanovic P; Vom Scheidt A; Mletzko K; Sarau G; Püschel K; Djuric M; Amling M; Christiansen S; Busse B
    Bone; 2018 May; 110():187-193. PubMed ID: 29427789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth.
    Yeni YN; Norman TL
    J Biomed Mater Res; 2000 Sep; 51(3):504-9. PubMed ID: 10880095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.