These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 39177590)
1. Comparative analysis of features and classification techniques in breast cancer detection for Biglycan biomarker images. Ma'touq J; Alnuman N Cancer Biomark; 2024; 40(3-4):263-273. PubMed ID: 39177590 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer. Ozcan I; Aydin H; Cetinkaya A Asian Pac J Cancer Prev; 2022 Oct; 23(10):3287-3297. PubMed ID: 36308351 [TBL] [Abstract][Full Text] [Related]
4. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods. Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055 [TBL] [Abstract][Full Text] [Related]
5. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines. Jebamony J; Jacob D Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242 [TBL] [Abstract][Full Text] [Related]
6. Framework of Computer Aided Diagnosis Systems for Cancer Classification Based on Medical Images. El Houby EMF J Med Syst; 2018 Jul; 42(8):157. PubMed ID: 29995204 [TBL] [Abstract][Full Text] [Related]
7. An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features. Aswathy MA; Jagannath M Med Biol Eng Comput; 2021 Sep; 59(9):1773-1783. PubMed ID: 34302269 [TBL] [Abstract][Full Text] [Related]
8. Machine learning models in breast cancer survival prediction. Montazeri M; Montazeri M; Montazeri M; Beigzadeh A Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558 [TBL] [Abstract][Full Text] [Related]
9. A Benign and Malignant Breast Tumor Classification Method via Efficiently Combining Texture and Morphological Features on Ultrasound Images. Wei M; Du Y; Wu X; Su Q; Zhu J; Zheng L; Lv G; Zhuang J Comput Math Methods Med; 2020; 2020():5894010. PubMed ID: 33062038 [TBL] [Abstract][Full Text] [Related]
10. Full Intelligent Cancer Classification of Thermal Breast Images to Assist Physician in Clinical Diagnostic Applications. Lashkari A; Pak F; Firouzmand M J Med Signals Sens; 2016; 6(1):12-24. PubMed ID: 27014608 [TBL] [Abstract][Full Text] [Related]
11. Decision support system for breast cancer detection using mammograms. Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749 [TBL] [Abstract][Full Text] [Related]
12. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines. Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352 [TBL] [Abstract][Full Text] [Related]
13. Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: Preliminary study. Vidić I; Egnell L; Jerome NP; Teruel JR; Sjøbakk TE; Østlie A; Fjøsne HE; Bathen TF; Goa PE J Magn Reson Imaging; 2018 May; 47(5):1205-1216. PubMed ID: 29044896 [TBL] [Abstract][Full Text] [Related]
14. Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images. Fleury E; Marcomini K Eur Radiol Exp; 2019 Aug; 3(1):34. PubMed ID: 31385114 [TBL] [Abstract][Full Text] [Related]
15. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
16. Prediction of heart disease and classifiers' sensitivity analysis. Almustafa KM BMC Bioinformatics; 2020 Jul; 21(1):278. PubMed ID: 32615980 [TBL] [Abstract][Full Text] [Related]
17. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
18. A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features. Sakai A; Onishi Y; Matsui M; Adachi H; Teramoto A; Saito K; Fujita H Radiol Phys Technol; 2020 Mar; 13(1):27-36. PubMed ID: 31686300 [TBL] [Abstract][Full Text] [Related]
19. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579 [TBL] [Abstract][Full Text] [Related]
20. Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers. Siuly ; Yin X; Hadjiloucas S; Zhang Y Comput Methods Programs Biomed; 2016 Apr; 127():64-82. PubMed ID: 27000290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]