These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 39177895)
61. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. Pham L; Baiocchi L; Kennedy L; Sato K; Meadows V; Meng F; Huang CK; Kundu D; Zhou T; Chen L; Alpini G; Francis H J Pineal Res; 2021 Mar; 70(2):e12699. PubMed ID: 33020940 [TBL] [Abstract][Full Text] [Related]
62. Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. Wu YH; Ursinus J; Zhou JN; Scheer FA; Ai-Min B; Jockers R; van Heerikhuize J; Swaab DF J Affect Disord; 2013 Jun; 148(2-3):357-67. PubMed ID: 23357659 [TBL] [Abstract][Full Text] [Related]
63. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. Reiter RJ J Cell Biochem; 1993 Apr; 51(4):394-403. PubMed ID: 8098713 [TBL] [Abstract][Full Text] [Related]
64. Melatonin: generation and modulation of avian circadian rhythms. Gwinner E; Hau M; Heigl S Brain Res Bull; 1997; 44(4):439-44. PubMed ID: 9370209 [TBL] [Abstract][Full Text] [Related]
65. Circadian clock gene Per2 is not necessary for the photoperiodic response in mice. Ikegami K; Iigo M; Yoshimura T PLoS One; 2013; 8(3):e58482. PubMed ID: 23505514 [TBL] [Abstract][Full Text] [Related]
66. Light, neurotransmitters and the suprachiasmatic nucleus control of pineal melatonin production in the rat. Kennaway DJ Biol Signals; 1997; 6(4-6):247-54. PubMed ID: 9500663 [TBL] [Abstract][Full Text] [Related]
67. Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus. Liang FQ; Walline R; Earnest DJ Neurosci Lett; 1998 Feb; 242(2):89-92. PubMed ID: 9533401 [TBL] [Abstract][Full Text] [Related]
68. The circadian clock protein Rev-erbα provides neuroprotection and attenuates neuroinflammation against Parkinson's disease via the microglial NLRP3 inflammasome. Kou L; Chi X; Sun Y; Han C; Wan F; Hu J; Yin S; Wu J; Li Y; Zhou Q; Zou W; Xiong N; Huang J; Xia Y; Wang T J Neuroinflammation; 2022 Jun; 19(1):133. PubMed ID: 35668454 [TBL] [Abstract][Full Text] [Related]
69. Role of circadian rhythm and endogenous melatonin in pathogenesis of acute gastric bleeding erosions induced by stress. Brzozowski T; Zwirska-Korczala K; Konturek PC; Konturek SJ; Sliwowski Z; Pawlik M; Kwiecien S; Drozdowicz D; Mazurkiewicz-Janik M; Bielanski W; Pawlik WW J Physiol Pharmacol; 2007 Dec; 58 Suppl 6():53-64. PubMed ID: 18212400 [TBL] [Abstract][Full Text] [Related]
70. Effect of pinealectomy on the circadian clock of the chick retina under different monochromatic lights. Bian J; Wang Z; Dong Y; Cao J; Chen Y Chronobiol Int; 2019 Apr; 36(4):548-563. PubMed ID: 30663441 [TBL] [Abstract][Full Text] [Related]
71. A Histologic Study of the Circadian System in Parkinson Disease, Multiple System Atrophy, and Progressive Supranuclear Palsy. De Pablo-Fernández E; Courtney R; Warner TT; Holton JL JAMA Neurol; 2018 Aug; 75(8):1008-1012. PubMed ID: 29710120 [TBL] [Abstract][Full Text] [Related]
72. Modulation of circadian rhythm of discharges of suprachiasmatic nucleus neurons in rat hypothalamic slices by melatonin. Zhou XJ; Jiang XH; Yu GD; Yin QZ Sheng Li Xue Bao; 2000 Jun; 52(3):215-9. PubMed ID: 11956567 [TBL] [Abstract][Full Text] [Related]
73. Dual sources of melatonin and evidence for different primary functions. Reiter RJ; Sharma R; Tan DX; Chuffa LGA; da Silva DGH; Slominski AT; Steinbrink K; Kleszczynski K Front Endocrinol (Lausanne); 2024; 15():1414463. PubMed ID: 38808108 [TBL] [Abstract][Full Text] [Related]
75. Paradoxical effects of NPY in the suprachiasmatic nucleus. Gamble KL; Paul KN; Karom MC; Tosini G; Albers HE Eur J Neurosci; 2006 May; 23(9):2488-94. PubMed ID: 16706855 [TBL] [Abstract][Full Text] [Related]
76. Hypothalamic circadian organization in birds. II. Clock gene expression. Abraham U; Albrecht U; Brandstätter R Chronobiol Int; 2003 Jul; 20(4):657-69. PubMed ID: 12916718 [TBL] [Abstract][Full Text] [Related]
77. Dissociation of circadian and light inhibition of melatonin release through forced desynchronization in the rat. Schwartz MD; Wotus C; Liu T; Friesen WO; Borjigin J; Oda GA; de la Iglesia HO Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17540-5. PubMed ID: 19805128 [TBL] [Abstract][Full Text] [Related]
78. Absence of pineal-independent mediation of seasonal differences in suprachiasmatic nucleus AVP and VIP mRNA expression in Siberian hamsters. Freeman DA; Herron JM; Duncan MJ Brain Res Mol Brain Res; 2002 May; 101(1-2):33-8. PubMed ID: 12007829 [TBL] [Abstract][Full Text] [Related]
79. The circadian clock, light/dark cycle and melatonin are differentially involved in the expression of daily and photoperiodic variations in mt(1) melatonin receptors in the Siberian and Syrian hamsters. Schuster C; Gauer F; Malan A; Recio J; Pévet P; Masson-Pévet M Neuroendocrinology; 2001 Jul; 74(1):55-68. PubMed ID: 11435758 [TBL] [Abstract][Full Text] [Related]
80. A New Perspective for Parkinson's Disease: Circadian Rhythm. Li S; Wang Y; Wang F; Hu LF; Liu CF Neurosci Bull; 2017 Feb; 33(1):62-72. PubMed ID: 27995565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]