These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39177925)

  • 1. Computational fluid dynamics simulating of the FDA benchmark blood pump with different coefficient sets and scaler shear stress models used in the power-law hemolysis model.
    Onder A; Incebay O; Yapici R
    J Artif Organs; 2024 Aug; ():. PubMed ID: 39177925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump.
    Ponnaluri SV; Hariharan P; Herbertson LH; Manning KB; Malinauskas RA; Craven BA
    Ann Biomed Eng; 2023 Jan; 51(1):253-269. PubMed ID: 36401112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining the universality of the hemolysis power law model from simulations of the FDA nozzle using calibrated model coefficients.
    Mantegazza A; Tobin N; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2023 Apr; 22(2):433-451. PubMed ID: 36418603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CFD-based Kriging surrogate modeling approach for predicting device-specific hemolysis power law coefficients in blood-contacting medical devices.
    Craven BA; Aycock KI; Herbertson LH; Malinauskas RA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1005-1030. PubMed ID: 30815758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.
    Hariharan P; D'Souza G; Horner M; Malinauskas RA; Myers MR
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26065371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesh Sensitivity Analysis for Quantitative Shear Stress Assessment in Blood Pumps Using Computational Fluid Dynamics.
    Gross-Hardt S; Boehning F; Steinseifer U; Schmitz-Rode T; Kaufmann TAS
    J Biomech Eng; 2019 Feb; 141(2):. PubMed ID: 30458464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical implications of the erroneous treatment of exposure time in the Eulerian hemolysis power law model.
    Faghih MM; Craven BA; Sharp MK
    Artif Organs; 2023 Sep; 47(9):1531-1538. PubMed ID: 37032625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FDA Benchmark Medical Device Flow Models for CFD Validation.
    Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA
    ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energy-dissipation-based power-law formulation for estimating hemolysis.
    Wu P; Groß-Hardt S; Boehning F; Hsu PL
    Biomech Model Mechanobiol; 2020 Apr; 19(2):591-602. PubMed ID: 31612342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index.
    Fraser KH; Zhang T; Taskin ME; Griffith BP; Wu ZJ
    J Biomech Eng; 2012 Aug; 134(8):081002. PubMed ID: 22938355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag.
    Han D; Leibowitz JL; Han L; Wang S; He G; Griffith BP; Wu ZJ
    Med Nov Technol Devices; 2022 Sep; 15():. PubMed ID: 36157896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump.
    Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y
    Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump.
    Arvand A; Hormes M; Reul H
    Artif Organs; 2005 Jul; 29(7):531-40. PubMed ID: 15982281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.
    Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A
    Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.