These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 39177959)
1. Unfolding the distribution of periodicity regions and diversity of chaotic attractors in the Chialvo neuron map. Ramírez-Ávila GM; Muni SS; Kapitaniak T Chaos; 2024 Aug; 34(8):. PubMed ID: 39177959 [TBL] [Abstract][Full Text] [Related]
2. Research on cascading high-dimensional isomorphic chaotic maps. Wu Q; Zhang F; Hong Q; Wang X; Zeng Z Cogn Neurodyn; 2021 Feb; 15(1):157-167. PubMed ID: 33786086 [TBL] [Abstract][Full Text] [Related]
3. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps. Inoue K Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209 [TBL] [Abstract][Full Text] [Related]
4. Chaotic attractors that exist only in fractional-order case. Matouk AE J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217 [TBL] [Abstract][Full Text] [Related]
5. Initial-switched boosting bifurcations in 2D hyperchaotic map. Bao BC; Li HZ; Zhu L; Zhang X; Chen M Chaos; 2020 Mar; 30(3):033107. PubMed ID: 32237789 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Chaotic Dynamics by the Extended Entropic Chaos Degree. Inoue K Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741547 [TBL] [Abstract][Full Text] [Related]
7. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function. Song ZG; Xu J; Zhen B Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569 [TBL] [Abstract][Full Text] [Related]
8. Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Ma J; Wu F; Jin W; Zhou P; Hayat T Chaos; 2017 May; 27(5):053108. PubMed ID: 28576108 [TBL] [Abstract][Full Text] [Related]
9. On the higher-order smallest ring-star network of Chialvo neurons under diffusive couplings. Nair AS; Ghosh I; Fatoyinbo HO; Muni SS Chaos; 2024 Jul; 34(7):. PubMed ID: 39038467 [TBL] [Abstract][Full Text] [Related]
10. Lyapunov exponent diagrams of a 4-dimensional Chua system. Stegemann C; Albuquerque HA; Rubinger RM; Rech PC Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640 [TBL] [Abstract][Full Text] [Related]
11. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map. Mugnaine M; Sales MR; Szezech JD; Viana RL Phys Rev E; 2022 Sep; 106(3-1):034203. PubMed ID: 36266788 [TBL] [Abstract][Full Text] [Related]
12. A new 10-D hyperchaotic system with coexisting attractors and high fractal dimension: Its dynamical analysis, synchronization and circuit design. Benkouider K; Bouden T; Sambas A; Lekouaghet B; Mohamed MA; Ibrahim Mohammed S; Mamat M; Ibrahim MAH; Ahmad MZ PLoS One; 2022; 17(4):e0266053. PubMed ID: 35413048 [TBL] [Abstract][Full Text] [Related]
13. Characteristic distributions of finite-time Lyapunov exponents. Prasad A; Ramaswamy R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2761-6. PubMed ID: 11970080 [TBL] [Abstract][Full Text] [Related]
14. Dynamics and Entropy Analysis for a New 4-D Hyperchaotic System with Coexisting Hidden Attractors. Liu L; Du C; Zhang X; Li J; Shi S Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267002 [TBL] [Abstract][Full Text] [Related]
15. Dynamics, circuit design, feedback control of a new hyperchaotic system and its application in audio encryption. Fu S; Cheng X; Liu J Sci Rep; 2023 Nov; 13(1):19385. PubMed ID: 37938603 [TBL] [Abstract][Full Text] [Related]
16. A hyperchaotic cycloid map with attractor topology sensitive to system parameters. Dong C; Sun K; He S; Wang H Chaos; 2021 Aug; 31(8):083132. PubMed ID: 34470247 [TBL] [Abstract][Full Text] [Related]
17. Statistical properties of dynamical chaos. Anishchenko VS; Vadivasova TE; Strelkova GI; Okrokvertskhov GA Math Biosci Eng; 2004 Jun; 1(1):161-84. PubMed ID: 20369966 [TBL] [Abstract][Full Text] [Related]
18. Classification of hyperchaotic, chaotic, and regular signals using single nonlinear node delay-based reservoir computers. Wenkack Liedji D; Talla Mbé JH; Kenne G Chaos; 2022 Dec; 32(12):123126. PubMed ID: 36587364 [TBL] [Abstract][Full Text] [Related]
19. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Grines EA; Kazakov A; Sataev IR Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377 [TBL] [Abstract][Full Text] [Related]
20. Hidden hyperchaotic attractors in a new 4D fractional order system and its synchronization. Li K; Cao J; He JM Chaos; 2020 Mar; 30(3):033129. PubMed ID: 32237787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]