These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 39178344)
21. Sickle red blood cell-derived extracellular vesicles activate endothelial cells and enhance sickle red cell adhesion mediated by von Willebrand factor. An R; Man Y; Cheng K; Zhang T; Chen C; Wang F; Abdulla F; Kucukal E; Wulftange WJ; Goreke U; Bode A; Nayak LV; Vercellotti GM; Belcher JD; Little JA; Gurkan UA Br J Haematol; 2023 May; 201(3):552-563. PubMed ID: 36604837 [TBL] [Abstract][Full Text] [Related]
22. Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Chadebech P; Bodivit G; Di Liberto G; Jouard A; Vasseur C; Pirenne F; Bartolucci P Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34208829 [TBL] [Abstract][Full Text] [Related]
23. Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs. Lamarre Y; Bourgeaux V; Pichon A; Hardeman MR; Campion Y; Hardeman-Zijp M; Martin C; Richalet JP; Bernaudin F; Driss F; Godfrin Y; Connes P Transfusion; 2013 Mar; 53(3):627-36. PubMed ID: 22804873 [TBL] [Abstract][Full Text] [Related]
24. Mathematical Analysis for the Flow of Sickle Red Blood Cells in Microvessels for Bio Medical Application. Chaturvedi P; Shah SR Yale J Biol Med; 2023 Mar; 96(1):13-21. PubMed ID: 37009195 [TBL] [Abstract][Full Text] [Related]
25. Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry. Rab MAE; van Oirschot BA; Bos J; Kanne CK; Sheehan VA; van Beers EJ; van Wijk R J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762454 [TBL] [Abstract][Full Text] [Related]
26. Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease. Faes C; Ilich A; Sotiaux A; Sparkenbaugh EM; Henderson MW; Buczek L; Beckman JD; Ellsworth P; Noubouossie DF; Bhoopat L; Piegore M; Renoux C; Bergmeier W; Park Y; Ataga KI; Cooley B; Wolberg AS; Key NS; Pawlinski R Blood; 2019 Jun; 133(23):2529-2541. PubMed ID: 30952675 [TBL] [Abstract][Full Text] [Related]
27. Modulation of Sickle Red Blood Cell Adhesion and its Associated Changes in Biomarkers by Sulfated Nonanticoagulant Heparin Derivative. Alshaiban A; Muralidharan-Chari V; Nepo A; Mousa SA Clin Appl Thromb Hemost; 2016 Apr; 22(3):230-8. PubMed ID: 25601897 [TBL] [Abstract][Full Text] [Related]
28. Microfluidics in Sickle Cell Disease Research: State of the Art and a Perspective Beyond the Flow Problem. Aich A; Lamarre Y; Sacomani DP; Kashima S; Covas DT; de la Torre LG Front Mol Biosci; 2020; 7():558982. PubMed ID: 33763448 [TBL] [Abstract][Full Text] [Related]
29. Shear dependent red blood cell adhesion in microscale flow. Kucukal E; Little JA; Gurkan UA Integr Biol (Camb); 2018 Apr; 10(4):194-206. PubMed ID: 29557482 [TBL] [Abstract][Full Text] [Related]
31. Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin. Praljak N; Iram S; Goreke U; Singh G; Hill A; Gurkan UA; Hinczewski M PLoS Comput Biol; 2021 Nov; 17(11):e1008946. PubMed ID: 34843453 [TBL] [Abstract][Full Text] [Related]
32. Red Blood Cell Vitamin C Concentration and Its Effect on Deformability in Pediatric Sickle Cell Disease. Choi DH; Violet PC; Majumdar S; Levine M J Pediatr Hematol Oncol; 2023 Oct; 45(7):e936-e939. PubMed ID: 36897309 [TBL] [Abstract][Full Text] [Related]
33. Differential effects of adenylyl cyclase-protein kinase A cascade on shear-induced changes of sickle cell deformability. Ugurel E; Connes P; Yavas G; Eglenen B; Turkay M; Aksu AC; Renoux C; Joly P; Gauthier A; Hot A; Bertrand Y; Cannas G; Yalcin O Clin Hemorheol Microcirc; 2019; 73(4):531-543. PubMed ID: 31306111 [TBL] [Abstract][Full Text] [Related]
34. Oxidative stress activates red cell adhesion to laminin in sickle cell disease. Lizarralde-Iragorri MA; Lefevre SD; Cochet S; El Hoss S; Brousse V; Filipe A; Dussiot M; Azouzi S; Le Van Kim C; Rodrigues-Lima F; Français O; Le Pioufle B; Klei T; van Bruggen R; El Nemer W Haematologica; 2021 Sep; 106(9):2478-2488. PubMed ID: 32855277 [TBL] [Abstract][Full Text] [Related]
35. Individual red blood cell nitric oxide production in sickle cell anemia: Nitric oxide production is increased and sickle shaped cells have unique morphologic change compared to discoid cells. Suriany S; Xu I; Liu H; Ulker P; Fernandez GE; Sposto R; Borzage M; Wenby R; Meiselman HJ; Forman HJ; Coates TD; Detterich JA Free Radic Biol Med; 2021 Aug; 171():143-155. PubMed ID: 33974976 [TBL] [Abstract][Full Text] [Related]
36. Patient-specific modeling of individual sickle cell behavior under transient hypoxia. Li X; Du E; Dao M; Suresh S; Karniadakis GE PLoS Comput Biol; 2017 Mar; 13(3):e1005426. PubMed ID: 28288152 [TBL] [Abstract][Full Text] [Related]
37. Red blood cell mechanical sensitivity improves in patients with sickle cell disease undergoing chronic transfusion after prolonged, subhemolytic shear exposure. Simmonds MJ; Suriany S; Ponce D; Detterich JA Transfusion; 2018 Dec; 58(12):2788-2796. PubMed ID: 30325033 [TBL] [Abstract][Full Text] [Related]
38. Red blood cell changes during the evolution of the sickle cell painful crisis. Ballas SK; Smith ED Blood; 1992 Apr; 79(8):2154-63. PubMed ID: 1562742 [TBL] [Abstract][Full Text] [Related]
39. Hypoxic storage of donor red cells preserves deformability after exposure to plasma from adults with sickle cell disease. Karafin MS; Field JJ; Ilich A; Li L; Qaquish BF; Shevkoplyas SS; Yoshida T Transfusion; 2023 Jan; 63(1):193-202. PubMed ID: 36310401 [TBL] [Abstract][Full Text] [Related]