These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Exploring complex networks via topological embedding on surfaces. Aste T; Gramatica R; Di Matteo T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036109. PubMed ID: 23030982 [TBL] [Abstract][Full Text] [Related]
24. A survey on exponential random graph models: an application perspective. Ghafouri S; Khasteh SH PeerJ Comput Sci; 2020; 6():e269. PubMed ID: 33816920 [TBL] [Abstract][Full Text] [Related]
25. CommPOOL: An interpretable graph pooling framework for hierarchical graph representation learning. Tang H; Ma G; He L; Huang H; Zhan L Neural Netw; 2021 Nov; 143():669-677. PubMed ID: 34375808 [TBL] [Abstract][Full Text] [Related]
26. Graph hierarchy: a novel framework to analyse hierarchical structures in complex networks. Moutsinas G; Shuaib C; Guo W; Jarvis S Sci Rep; 2021 Jul; 11(1):13943. PubMed ID: 34230531 [TBL] [Abstract][Full Text] [Related]
27. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data. Bhadra S; Bhattacharyya C; Chandra NR; Mian IS Algorithms Mol Biol; 2009 Feb; 4():5. PubMed ID: 19239685 [TBL] [Abstract][Full Text] [Related]
28. Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities. Mitrović M; Tadić B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026123. PubMed ID: 19792216 [TBL] [Abstract][Full Text] [Related]
29. Optimization of graph construction can significantly increase the power of structural brain network studies. Messaritaki E; Dimitriadis SI; Jones DK Neuroimage; 2019 Oct; 199():495-511. PubMed ID: 31176831 [TBL] [Abstract][Full Text] [Related]
30. A new stochastic diffusion model for influence maximization in social networks. Rezvanian A; Vahidipour SM; Meybodi MR Sci Rep; 2023 Apr; 13(1):6122. PubMed ID: 37059847 [TBL] [Abstract][Full Text] [Related]
32. Detrimental network effects in privacy: A graph-theoretic model for node-based intrusions. Houssiau F; Sapieżyński P; Radaelli L; Shmueli E; de Montjoye YA Patterns (N Y); 2023 Jan; 4(1):100662. PubMed ID: 36699738 [TBL] [Abstract][Full Text] [Related]
33. Persistent homology of complex networks for dynamic state detection. Myers A; Munch E; Khasawneh FA Phys Rev E; 2019 Aug; 100(2-1):022314. PubMed ID: 31574743 [TBL] [Abstract][Full Text] [Related]
34. Visual exploration of complex time-varying graphs. Kumar G; Garland M IEEE Trans Vis Comput Graph; 2006; 12(5):805-12. PubMed ID: 17080803 [TBL] [Abstract][Full Text] [Related]
35. State concentration exponent as a measure of quickness in Kauffman-type networks. Amari S; Ando H; Toyoizumi T; Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022814. PubMed ID: 23496575 [TBL] [Abstract][Full Text] [Related]
36. Impact of global structure on diffusive exploration of organelle networks. Brown AI; Westrate LM; Koslover EF Sci Rep; 2020 Mar; 10(1):4984. PubMed ID: 32188905 [TBL] [Abstract][Full Text] [Related]
37. Multi-scale detection of hierarchical community architecture in structural and functional brain networks. Ashourvan A; Telesford QK; Verstynen T; Vettel JM; Bassett DS PLoS One; 2019; 14(5):e0215520. PubMed ID: 31071099 [TBL] [Abstract][Full Text] [Related]
38. Input graph: the hidden geometry in controlling complex networks. Zhang X; Lv T; Pu Y Sci Rep; 2016 Nov; 6():38209. PubMed ID: 27901102 [TBL] [Abstract][Full Text] [Related]
39. Realizations of crystal nets. I. (Generalized) derived graphs. McColm G Acta Crystallogr A Found Adv; 2024 Jan; 80(Pt 1):18-32. PubMed ID: 38112381 [TBL] [Abstract][Full Text] [Related]
40. Fault tolerance of random graphs with respect to connectivity: Mean-field approximation for semidense random graphs. Takabe S; Nakano T; Wadayama T Phys Rev E; 2019 May; 99(5-1):050304. PubMed ID: 31212417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]