These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 39178622)

  • 1. Walking representation and simulation based on multi-source image fusion and multi-agent reinforcement learning for gait rehabilitation.
    Zhu Y; Xiao M; Robbins D; Wu X; Lu W; Hou W
    Artif Intell Med; 2024 Oct; 156():102945. PubMed ID: 39178622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender Recognition Based on Gradual and Ensemble Learning from Multi-View Gait Energy Images and Poses.
    Leung TM; Chan KL
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
    Song S; Kidziński Ł; Peng XB; Ong C; Hicks J; Levine S; Atkeson CG; Delp SL
    J Neuroeng Rehabil; 2021 Aug; 18(1):126. PubMed ID: 34399772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.
    Goh SK; Abbass HA; Tan KC; Al-Mamun A; Thakor N; Bezerianos A; Li J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1858-1867. PubMed ID: 30106679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection.
    Song S; Fernandes NJ; Nordin AD
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Based Abnormal Gait Classification with IMU Considering Joint Impairment.
    Hwang S; Kim J; Yang S; Moon HJ; Cho KH; Youn I; Sung JK; Han S
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic Validation of a Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait Assessments.
    Geerse DJ; Coolen BH; Roerdink M
    PLoS One; 2015; 10(10):e0139913. PubMed ID: 26461498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction.
    Guo Z; Zheng H; Wu H; Zhang J; Zhou G; Long J
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37059084
    [No Abstract]   [Full Text] [Related]  

  • 13. Learning 3D Bipedal Walking with Planned Footsteps and Fourier Series Periodic Gait Planning.
    Wang S; Piao S; Leng X; He Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific walking pattern simulation in a gait trajectory guiding device.
    Hasan MK; Park JH; Park SH; Hwang SH; Khang G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7126-30. PubMed ID: 19963951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of sparse representation and dictionary matching for identification of humans in uncontrolled environment.
    Fernandes SL; Bala GJ
    Comput Biol Med; 2016 Sep; 76():215-37. PubMed ID: 27498411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative gait assessment method based on energy exchange analysis during walking: a normal gait study.
    Gider F; Matjacić Z; Bajd T
    J Med Eng Technol; 2005; 29(2):90-4. PubMed ID: 15804858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics.
    Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C
    Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of markerless motion capture in gait recognition.
    Sandau M
    Dan Med J; 2016 Mar; 63(3):. PubMed ID: 26931198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.
    Jacobs DA; Ferris DP
    J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.