These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39178898)

  • 1. Distraction impact of concurrent conversation on event-related potential based brain-computer interfaces.
    Kim M; Kim SP
    J Neural Eng; 2024 Sep; 21(5):. PubMed ID: 39178898
    [No Abstract]   [Full Text] [Related]  

  • 2. P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls.
    McCane LM; Heckman SM; McFarland DJ; Townsend G; Mak JN; Sellers EW; Zeitlin D; Tenteromano LM; Wolpaw JR; Vaughan TM
    Clin Neurophysiol; 2015 Nov; 126(11):2124-31. PubMed ID: 25703940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correcting for ERP latency jitter improves gaze-independent BCI decoding.
    Van Den Kerchove A; Si-Mohammed H; Van Hulle MM; Cabestaing F
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38959876
    [No Abstract]   [Full Text] [Related]  

  • 4. From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces.
    Ahsan Awais M; Ward T; Redmond P; Healy G
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38941986
    [No Abstract]   [Full Text] [Related]  

  • 5. Motor-Induced Suppression of the N100 Event-Related Potential During Motor Imagery Control of a Speech Synthesizer Brain-Computer Interface.
    Brumberg JS; Pitt KM
    J Speech Lang Hear Res; 2019 Jul; 62(7):2133-2140. PubMed ID: 31306609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training and testing ERP-BCIs under different mental workload conditions.
    Ke Y; Wang P; Chen Y; Gu B; Qi H; Zhou P; Ming D
    J Neural Eng; 2016 Feb; 13(1):016007. PubMed ID: 26655346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does bimodal stimulus presentation increase ERP components usable in BCIs?
    Thurlings ME; Brouwer AM; Van Erp JB; Blankertz B; Werkhoven PJ
    J Neural Eng; 2012 Aug; 9(4):045005. PubMed ID: 22831989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Employing an active mental task to enhance the performance of auditory attention-based brain-computer interfaces.
    Xu H; Zhang D; Ouyang M; Hong B
    Clin Neurophysiol; 2013 Jan; 124(1):83-90. PubMed ID: 22854211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Different Types of Stimuli in an Event-Related Potential-Based Brain-Computer Interface Speller under Rapid Serial Visual Presentation.
    Ron-Angevin R; Fernández-Rodríguez Á; Velasco-Álvarez F; Lespinet-Najib V; André JM
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Study of Influence of Sound on Visual ERP-Based Brain Computer Interface.
    Xu G; Wu Y; Li M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (C)overt attention and visual speller design in an ERP-based brain-computer interface.
    Treder MS; Blankertz B
    Behav Brain Funct; 2010 May; 6():28. PubMed ID: 20509913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI).
    Kaufmann T; Kübler A
    J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern.
    Borirakarawin M; Punsawad Y
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of P300 latency jitter on event related potential-based brain-computer interface performance.
    Aricò P; Aloise F; Schettini F; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035008. PubMed ID: 24835331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Single-Character Visual BCI Paradigm With Multiple Active Cognitive Tasks.
    Zhang N; Zhou Z; Liu Y; Yin E; Jiang J; Hu D
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3119-3128. PubMed ID: 30794504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RSVP-based BCI for inconspicuous targets: detection, localization, and modulation of attention.
    Zhou Q; Zhang Q; Wang B; Yang Y; Yuan Z; Li S; Zhao Y; Zhu Y; Gao Z; Zhou J; Wang C
    J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39029493
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.