These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39178898)

  • 21. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context.
    Halder S; Leinfelder T; Schulz SM; Kübler A
    Hum Brain Mapp; 2019 Jun; 40(8):2399-2412. PubMed ID: 30693612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions.
    Jin J; Allison BZ; Zhang Y; Wang X; Cichocki A
    Int J Neural Syst; 2014 Dec; 24(8):1450027. PubMed ID: 25182191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Comparison of event-related potentials components characteristics obtained during stimulation of symbolical and alphabetic matrixes used in brain-computer interface paradigm].
    Saltykov KA; Bark ED; Kulikov MA
    Fiziol Cheloveka; 2014; 40(4):18-26. PubMed ID: 25707215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing visual-to-auditory delay for multimodal BCI speller.
    An X; Ming D; Sterling D; Qi H; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1226-9. PubMed ID: 25570186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of auditory and visual p300 brain-computer interface aptitude.
    Halder S; Hammer EM; Kleih SC; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    PLoS One; 2013; 8(2):e53513. PubMed ID: 23457444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speech stream segregation to control an ERP-based auditory BCI.
    Velasco-Álvarez F; Fernández-Rodríguez Á; Medina-Juliá MT; Ron-Angevin R
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33470970
    [No Abstract]   [Full Text] [Related]  

  • 29. Effect of Stimulus Size in a Visual ERP-Based BCI under RSVP.
    Fernández-Rodríguez Á; Darves-Bornoz A; Velasco-Álvarez F; Ron-Angevin R
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm.
    Foldes ST; Taylor DM
    J Neuroeng Rehabil; 2013 Dec; 10():116. PubMed ID: 24359452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering.
    Mobaien A; Boostani R; Sanei S
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295418
    [No Abstract]   [Full Text] [Related]  

  • 32. An idle state-detecting method based on transient visual evoked potentials for an asynchronous ERP-based BCI.
    Gong M; Xu G; Li M; Lin F
    J Neurosci Methods; 2020 May; 337():108670. PubMed ID: 32142909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface.
    Thielen J; Marsman P; Farquhar J; Desain P
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33690182
    [No Abstract]   [Full Text] [Related]  

  • 34. Offline analysis of context contribution to ERP-based typing BCI performance.
    Orhan U; Erdogmus D; Roark B; Oken B; Fried-Oken M
    J Neural Eng; 2013 Dec; 10(6):066003. PubMed ID: 24099944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved SSVEP-based brain-computer interface with low-contrast visual stimulation and its application in UAV control.
    Cheng Y; Yan L; Shoukat MU; She J; Liu W; Shi C; Wu Y; Yan F
    J Neurophysiol; 2024 Sep; 132(3):809-821. PubMed ID: 38985934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How stimulation speed affects Event-Related Potentials and BCI performance.
    Höhne J; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1802-5. PubMed ID: 23366261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study on dynamic model of steady-state visual evoked potentials.
    Zhang S; Han X; Chen X; Wang Y; Gao S; Gao X
    J Neural Eng; 2018 Aug; 15(4):046010. PubMed ID: 29616978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the presentation order of stimulations in sequential ERP/SSVEP Hybrid Brain-Computer Interface.
    Bekhelifi O; Berrached NE; Bendahmane A
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38430561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification.
    Ko LW; Sandeep Vara Sankar D; Huang Y; Lu YC; Shaw S; Jung TP
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33291083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.