BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3917916)

  • 1. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum.
    Eikmanns B; Fuchs G; Thauer RK
    Eur J Biochem; 1985 Jan; 146(1):149-54. PubMed ID: 3917916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.
    Bott M; Thauer RK
    Eur J Biochem; 1987 Oct; 168(2):407-12. PubMed ID: 2822415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane.
    Schönheit P; Beimborn DB
    Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-spectrometric studies of the interrelations among hydrogenase, carbon monoxide dehydrogenase, and methane-forming activities in pure and mixed cultures of Desulfovibrio vulgaris, Desulfovibrio desulfuricans, and Methanosarcina barkeri.
    Rajagopal BS; Lespinat PA; Fauque G; LeGall J; Berlier YM
    Appl Environ Microbiol; 1989 Sep; 55(9):2123-9. PubMed ID: 2508553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide.
    Länge S; Fuchs G
    Eur J Biochem; 1987 Feb; 163(1):147-54. PubMed ID: 3102234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri.
    Bott M; Eikmanns B; Thauer RK
    Eur J Biochem; 1986 Sep; 159(2):393-8. PubMed ID: 3093229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanogenesis and ATP synthesis in methanogenic bacteria at low electrochemical proton potentials. An explanation for the apparent uncoupler insensitivity of ATP synthesis.
    Kaesler B; Schönheit P
    Eur J Biochem; 1988 May; 174(1):189-97. PubMed ID: 2897291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri.
    Krzycki JA; Zeikus JG
    J Bacteriol; 1984 Apr; 158(1):231-7. PubMed ID: 6425262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum.
    Schönheit P; Moll J; Thauer RK
    Arch Microbiol; 1979 Oct; 123(1):105-7. PubMed ID: 120728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formyl-methanofuran synthesis in Methanobacterium thermoautotrophicum.
    Bobik TA; DiMarco AA; Wolfe RS
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):323-6. PubMed ID: 2128800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.
    Abbanat DR; Ferry JG
    J Bacteriol; 1990 Dec; 172(12):7145-50. PubMed ID: 2123865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum.
    Bertram PA; Thauer RK
    Eur J Biochem; 1994 Dec; 226(3):811-8. PubMed ID: 7813470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
    Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J
    J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-carboxymethanofuran (carbamate) formation from methanofuran and CO2 in methanogenic archaea. Thermodynamics and kinetics of the spontaneous reaction.
    Bartoschek S; Vorholt JA; Thauer RK; Geierstanger BH; Griesinger C
    Eur J Biochem; 2000 Jun; 267(11):3130-8. PubMed ID: 10824097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of trickle-bed bioreactors for converting synthesis gas to methane.
    Kimmel DE; Klasson KT; Clausen EC; Gaddy JL
    Appl Biochem Biotechnol; 1991; 28-29():457-69. PubMed ID: 1929378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications.
    Anderson ME; Lindahl PA
    Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon monoxide oxidation by methanogenic bacteria.
    Daniels L; Fuchs G; Thauer RK; Zeikus JG
    J Bacteriol; 1977 Oct; 132(1):118-26. PubMed ID: 21159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetate thiokinase and the assimilation of acetate in methanobacterium thermoautotrophicum.
    Oberlies G; Fuchs G; Thauer RK
    Arch Microbiol; 1980 Dec; 128(2):248-52. PubMed ID: 6111300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide.
    Ensign SA
    Biochemistry; 1995 Apr; 34(16):5372-8. PubMed ID: 7727395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.