These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39179397)

  • 21. Monitoring the penetration process of single microneedles with varying tip diameters.
    Römgens AM; Bader DL; Bouwstra JA; Baaijens FPT; Oomens CWJ
    J Mech Behav Biomed Mater; 2014 Dec; 40():397-405. PubMed ID: 25305633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled transdermal delivery of model drug compounds by MEMS microneedle array.
    Xie Y; Xu B; Gao Y
    Nanomedicine; 2005 Jun; 1(2):184-90. PubMed ID: 17292077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced skin delivery of vismodegib by microneedle treatment.
    Nguyen HX; Banga AK
    Drug Deliv Transl Res; 2015 Aug; 5(4):407-23. PubMed ID: 26069156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro.
    Donnelly RF; Singh TR; Tunney MM; Morrow DI; McCarron PA; O'Mahony C; Woolfson AD
    Pharm Res; 2009 Nov; 26(11):2513-22. PubMed ID: 19756972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skin penetration of silicon dioxide microneedle arrays.
    Kim S; Shetty S; Price D; Bhansali S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4088-91. PubMed ID: 17946222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microneedle-based drug delivery systems for transdermal route.
    Pierre MB; Rossetti FC
    Curr Drug Targets; 2014 Mar; 15(3):281-91. PubMed ID: 24144208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of microneedle array devices for continuous glucose monitoring: a review.
    El-Laboudi A; Oliver NS; Cass A; Johnston D
    Diabetes Technol Ther; 2013 Jan; 15(1):101-15. PubMed ID: 23234256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Minimally Invasive Hollow Microneedle With a Cladding Structure: Ultra-Thin but Strong, Batch Manufacturable.
    Chen J; Cheng P; Sun Y; Wang Y; Zhang X; Yang Z; Ding G
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3480-3485. PubMed ID: 30932818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ex vivo evaluation of a microneedle array device for transdermal application.
    Indermun S; Choonara YE; Kumar P; du Toit LC; Modi G; van Vuuren S; Luttge R; Pillay V
    Int J Pharm; 2015 Dec; 496(2):351-9. PubMed ID: 26453791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo.
    Vicente-Pérez EM; Quinn HL; McAlister E; O'Neill S; Hanna LA; Barry JG; Donnelly RF
    Pharm Res; 2016 Dec; 33(12):3072-3080. PubMed ID: 27633885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process.
    Howells O; Blayney GJ; Gualeni B; Birchall JC; Eng PF; Ashraf H; Sharma S; Guy OJ
    Eur J Pharm Biopharm; 2022 Feb; 171():19-28. PubMed ID: 34144128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of fluid infusion during microneedle insertion and retraction.
    Martanto W; Moore JS; Couse T; Prausnitz MR
    J Control Release; 2006 May; 112(3):357-61. PubMed ID: 16626836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration.
    McGrath MG; Vucen S; Vrdoljak A; Kelly A; O'Mahony C; Crean AM; Moore A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):200-11. PubMed ID: 23727511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation.
    Watanabe T; Hagino K; Sato T
    Biomed Microdevices; 2014 Aug; 16(4):591-7. PubMed ID: 24733417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing microneedle arrays for transdermal drug delivery: extension to non-square distribution of microneedles.
    Al-Qallaf B; Das DB
    J Drug Target; 2009 Feb; 17(2):108-22. PubMed ID: 19016071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Successful application of large microneedle patches by human volunteers.
    Ripolin A; Quinn J; Larrañeta E; Vicente-Perez EM; Barry J; Donnelly RF
    Int J Pharm; 2017 Apr; 521(1-2):92-101. PubMed ID: 28216463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element analysis and optimization of microneedle arrays for transdermal vaccine delivery: comparison of coated and dissolving microneedles.
    Yolai N; Suttirat P; Leelawattanachai J; Boonyasiriwat C; Modchang C
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(12):1379-1387. PubMed ID: 36048187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element analysis of hollow out-of-plane HfO
    Zhang YH; A Campbell S; Karthikeyan S
    Biomed Microdevices; 2018 Feb; 20(1):19. PubMed ID: 29455257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin.
    Milewski M; Brogden NK; Stinchcomb AL
    Expert Opin Drug Deliv; 2010 May; 7(5):617-29. PubMed ID: 20205604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.