BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 3917973)

  • 1. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis.
    Christadoss P; Lindstrom JM; Melvold RW; Talal N
    Immunogenetics; 1985; 21(1):33-8. PubMed ID: 3917973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors.
    Christadoss P; Lennon VA; Krco CJ; David CS
    J Immunol; 1982 Mar; 128(3):1141-4. PubMed ID: 6799570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control of autoimmunity to acetylcholine receptors: role of Ia molecules.
    Christadoss P; Lennon VA; Krco CJ; Lambert EH; David CS
    Ann N Y Acad Sci; 1981; 377():258-77. PubMed ID: 6803646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How subtle differences in MHC class II affect the severity of experimental myasthenia gravis.
    Yang B; McIntosh KR; Drachman DB
    Clin Immunol Immunopathol; 1998 Jan; 86(1):45-58. PubMed ID: 9434796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors that determine the severity of experimental myasthenia gravis.
    Drachman DB; McIntosh KR; Yang B
    Ann N Y Acad Sci; 1998 May; 841():262-82. PubMed ID: 9668247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes.
    Infante AJ; Thompson PA; Krolick KA; Wall KA
    J Immunol; 1991 May; 146(9):2977-82. PubMed ID: 1707927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential use of a T cell receptor V beta gene by acetylcholine receptor reactive T cells from myasthenia gravis-susceptible mice.
    Infante AJ; Levcovitz H; Gordon V; Wall KA; Thompson PA; Krolick KA
    J Immunol; 1992 Jun; 148(11):3385-90. PubMed ID: 1375242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms by which the I-ABM12 mutation influences susceptibility to experimental myasthenia gravis: a study in homozygous and heterozygous mice.
    Karachunski PI; Ostlie N; Bellone M; Infante AJ; Conti-Fine BM
    Scand J Immunol; 1995 Aug; 42(2):215-25. PubMed ID: 7631155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor.
    Shenoy M; Oshima M; Atassi MZ; Christadoss P
    Clin Immunol Immunopathol; 1993 Mar; 66(3):230-8. PubMed ID: 7679342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis.
    Kaul R; Shenoy M; Goluszko E; Christadoss P
    J Immunol; 1994 Mar; 152(6):3152-7. PubMed ID: 8144909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor.
    Bellone M; Ostlie N; Lei SJ; Wu XD; Conti-Tronconi BM
    J Immunol; 1991 Sep; 147(5):1484-91. PubMed ID: 1715360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptors is under H-2-linked Ir gene control.
    Christadoss P; Lennon VA; David C
    J Immunol; 1979 Dec; 123(6):2540-3. PubMed ID: 115916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular immune response to acetylcholine receptors in murine experimental autoimmune myasthenia gravis: inhibition with monoclonal anti-I-A antibodies.
    Christadoss P; Lindstrom J; Talal N
    Cell Immunol; 1983 Oct; 81(1):1-8. PubMed ID: 6577968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of B6.C-H-2bm12 to heterologous insulins show no correlation with the putative gene conversion but define Iabm12 as functionally unique.
    Hansen TH; Walsh WD; Rubocki RJ; Kapp JA
    J Mol Cell Immunol; 1986; 2(6):359-68. PubMed ID: 3151061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of major histocompatibility complex genes in myasthenia gravis and experimental autoimmune myasthenia gravis pathogenesis.
    Kaul R; Shenoy M; Christadoss P
    Adv Neuroimmunol; 1994; 4(4):387-402. PubMed ID: 7536602
    [No Abstract]   [Full Text] [Related]  

  • 17. Immunogenetics of experimental autoimmune myasthenia gravis.
    Christadoss P
    Crit Rev Immunol; 1989; 9(4):247-78. PubMed ID: 2679661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis. Usage of multiple TCRBV genes in the H-2b strains.
    Wu B; Shenoy M; Goluszko E; Kaul R; Christadoss P
    J Immunol; 1995 Apr; 154(7):3603-10. PubMed ID: 7897239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C5 gene influences the development of murine myasthenia gravis.
    Christadoss P
    J Immunol; 1988 Apr; 140(8):2589-92. PubMed ID: 3356901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profile of the regions of acetylcholine receptor alpha chain recognized by T-lymphocytes and by antibodies in EAMG-susceptible and non-susceptible mouse strains after different periods of immunization with the receptor.
    Oshima M; Pachner AR; Atassi MZ
    Mol Immunol; 1994 Aug; 31(11):833-43. PubMed ID: 7519305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.