These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3918008)

  • 1. Fermentation mechanism of fucose and rhamnose in Salmonella typhimurium and Klebsiella pneumoniae.
    Badía J; Ros J; Aguilar J
    J Bacteriol; 1985 Jan; 161(1):435-7. PubMed ID: 3918008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerobic excretion of 1,2-propanediol by Salmonella typhimurium.
    Baldoma L; Badia J; Obradors N; Aguilar J
    J Bacteriol; 1988 Jun; 170(6):2884-5. PubMed ID: 3286623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic metabolism of the L-rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium.
    Obradors N; Badía J; Baldomà L; Aguilar J
    J Bacteriol; 1988 May; 170(5):2159-62. PubMed ID: 3283105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propanediol oxidoreductases of Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. Aspects of interspecies structural and regulatory differentiation.
    Ros J; Aguilar J
    Biochem J; 1985 Oct; 231(1):145-9. PubMed ID: 3904730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase.
    Boronat A; Aguilar J
    J Bacteriol; 1981 Jul; 147(1):181-5. PubMed ID: 7016842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of L-1, 2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism.
    Cocks GT; Aguilar T; Lin EC
    J Bacteriol; 1974 Apr; 118(1):83-8. PubMed ID: 4595205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme.
    Boronat A; Aguilar J
    J Bacteriol; 1979 Nov; 140(2):320-6. PubMed ID: 40956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation.
    Baldomà L; Aguilar J
    J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli.
    Chen YM; Lin EC
    J Bacteriol; 1984 Mar; 157(3):828-32. PubMed ID: 6421801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and structural evidence for the presence of propanediol oxidoreductase isoenzymes in Escherichia coli.
    Ros J; Aguilar J
    J Gen Microbiol; 1984 Mar; 130(3):687-92. PubMed ID: 6427403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
    Chen YM; Tobin JF; Zhu Y; Schleif RF; Lin EC
    J Bacteriol; 1987 Aug; 169(8):3712-9. PubMed ID: 3301811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli.
    Hacking AJ; Lin EC
    J Bacteriol; 1976 Jun; 126(3):1166-72. PubMed ID: 181364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli.
    Hacking AJ; Lin EC
    J Bacteriol; 1977 May; 130(2):832-8. PubMed ID: 400796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions.
    Millard P; Pérochon J; Létisse F
    Appl Environ Microbiol; 2021 Jul; 87(16):e0071921. PubMed ID: 34047632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of (S)-1,2-propanediol from l-rhamnose using the moderately thermophilic Clostridium strain AK1.
    Ingvadottir EM; Scully SM; Orlygsson J
    Anaerobe; 2018 Dec; 54():26-30. PubMed ID: 30009943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation of 1,2-propanediol with 1,2-ethanediol by some genera of Enterobacteriaceae, involving coenzyme B12-dependent diol dehydratase.
    Toraya T; Honda S; Fukui S
    J Bacteriol; 1979 Jul; 139(1):39-47. PubMed ID: 378959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli.
    Chen YM; Zhu Y; Lin EC
    J Bacteriol; 1987 Jul; 169(7):3289-94. PubMed ID: 3298215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol.
    Zhuge B; Zhang C; Fang H; Zhuge J; Permaul K
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2177-84. PubMed ID: 20499228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli.
    Matsubara M; Urano N; Yamada S; Narutaki A; Fujii M; Kataoka M
    J Biosci Bioeng; 2016 Oct; 122(4):421-6. PubMed ID: 27072298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli.
    Zhu Y; Lin EC
    J Bacteriol; 1989 Feb; 171(2):862-7. PubMed ID: 2644239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.