These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39180232)

  • 1. Marker-free genomic editing in Saccharomyces cerevisiae using universal donor templates and multiplexing CRISPR-CAS9.
    Grissom JH; Moody SE; Chi RJ
    Yeast; 2024 Sep; 41(9):568-579. PubMed ID: 39180232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus.
    Gorter de Vries AR; de Groot PA; van den Broek M; Daran JG
    Microb Cell Fact; 2017 Dec; 16(1):222. PubMed ID: 29207996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Cre-lox and CRISPR-Cas9 as tools for recycling of multiple-integrated selection markers in Saccharomyces cerevisiae.
    Moon HY; Sim GH; Kim HJ; Kim K; Kang HA
    J Microbiol; 2022 Jan; 60(1):18-30. PubMed ID: 34964942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker-free genetic manipulations in yeast using CRISPR/CAS9 system.
    Soreanu I; Hendler A; Dahan D; Dovrat D; Aharoni A
    Curr Genet; 2018 Oct; 64(5):1129-1139. PubMed ID: 29626221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and evaluation of gRNA arrays for multiplex CRISPR-Cas9.
    Žun G; Doberšek K; Petrovič U
    Yeast; 2023 Jan; 40(1):32-41. PubMed ID: 36536407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae.
    Levi O; Arava Y
    Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in
    Jacobus AP; Barreto JA; de Bem LS; Menegon YA; Fier Í; Bueno JGR; Dos Santos LV; Gross J
    ACS Synth Biol; 2022 Nov; 11(11):3886-3891. PubMed ID: 36257021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.
    Morse NJ; Wagner JM; Reed KB; Gopal MR; Lauffer LH; Alper HS
    ACS Synth Biol; 2018 Apr; 7(4):1075-1084. PubMed ID: 29565571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Maestroni L; Butti P; Senatore VG; Branduardi P
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36640150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit.
    Bean BDM; Whiteway M; Martin VJJ
    G3 (Bethesda); 2022 Jul; 12(8):. PubMed ID: 35708612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Easy efficient HDR-based targeted knock-in in
    Singh R; Chandel S; Ghosh A; Gautam A; Huson DH; Ravichandiran V; Ghosh D
    Bioengineered; 2022 Jun; 13(6):14857-14871. PubMed ID: 36602175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual auxotrophy coupled red labeling strategy for efficient genome editing in Saccharomyces cerevisiae.
    Li J; Wu T; Wang J; Chen Y; Zhang W; Cai L; Lai S; Hu K; Jin W
    Fungal Genet Biol; 2024 Aug; 173():103910. PubMed ID: 38897560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast genetic interaction screens in the age of CRISPR/Cas.
    Adames NR; Gallegos JE; Peccoud J
    Curr Genet; 2019 Apr; 65(2):307-327. PubMed ID: 30255296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.