These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 39180857)
1. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data. Abu-Doleh A; Al Fahoum A Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857 [TBL] [Abstract][Full Text] [Related]
2. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement. Guo Q; Yuan M; Zhang L; Deng M Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069 [TBL] [Abstract][Full Text] [Related]
3. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies. Das S; Rai A; Merchant ML; Cave MC; Rai SN Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896 [TBL] [Abstract][Full Text] [Related]
4. Scanorama: integrating large and diverse single-cell transcriptomic datasets. Hie BL; Kim S; Rando TA; Bryson B; Berger B Nat Protoc; 2024 Aug; 19(8):2283-2297. PubMed ID: 38844552 [TBL] [Abstract][Full Text] [Related]
5. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network. Huang Z; Wang J; Lu X; Mohd Zain A; Yu G Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262 [TBL] [Abstract][Full Text] [Related]
6. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data. Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233 [TBL] [Abstract][Full Text] [Related]
7. scSwinFormer: A Transformer-Based Cell-Type Annotation Method for scRNA-Seq Data Using Smooth Gene Embedding and Global Features. Qin H; Shi X; Zhou H J Chem Inf Model; 2024 Aug; 64(16):6316-6323. PubMed ID: 39101690 [TBL] [Abstract][Full Text] [Related]
8. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy. Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696 [TBL] [Abstract][Full Text] [Related]
9. Identifying cell states in single-cell RNA-seq data at statistically maximal resolution. Grobecker P; Sakoparnig T; van Nimwegen E PLoS Comput Biol; 2024 Jul; 20(7):e1012224. PubMed ID: 38995959 [TBL] [Abstract][Full Text] [Related]
10. Single-cell analysis via manifold fitting: A framework for RNA clustering and beyond. Yao Z; Li B; Lu Y; Yau ST Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2400002121. PubMed ID: 39226348 [TBL] [Abstract][Full Text] [Related]
11. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051 [TBL] [Abstract][Full Text] [Related]
12. cnnImpute: missing value recovery for single cell RNA sequencing data. Zhang W; Huckaby B; Talburt J; Weissman S; Yang MQ Sci Rep; 2024 Feb; 14(1):3946. PubMed ID: 38365936 [TBL] [Abstract][Full Text] [Related]
13. On the use of QDE-SVM for gene feature selection and cell type classification from scRNA-seq data. Ng GYL; Tan SC; Ong CS PLoS One; 2023; 18(10):e0292961. PubMed ID: 37856458 [TBL] [Abstract][Full Text] [Related]
14. CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data. Xu J; Zhang A; Liu F; Chen L; Zhang X Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200157 [TBL] [Abstract][Full Text] [Related]
15. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
16. scPanel: a tool for automatic identification of sparse gene panels for generalizable patient classification using scRNA-seq datasets. Xie Y; Yang J; Ouyang JF; Petretto E Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39350339 [TBL] [Abstract][Full Text] [Related]
17. Unsupervised cell functional annotation for single-cell RNA-seq. Li D; Ding J; Bar-Joseph Z Genome Res; 2022 Sep; 32(9):1765-1775. PubMed ID: 35764397 [TBL] [Abstract][Full Text] [Related]
18. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets. Yuan M; Chen L; Deng M Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390 [TBL] [Abstract][Full Text] [Related]
19. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets. Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449 [TBL] [Abstract][Full Text] [Related]
20. Assessing parameter efficient methods for pre-trained language model in annotating scRNA-seq data. Xia Y; Liu Y; Li T; He S; Chang H; Wang Y; Zhang Y; Ge W Methods; 2024 Aug; 228():12-21. PubMed ID: 38759908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]