These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39180859)
1. Learning from the few: Fine-grained approach to pediatric wrist pathology recognition on a limited dataset. Ahmed A; Imran AS; Kastrati Z; Daudpota SM; Ullah M; Noor W Comput Biol Med; 2024 Oct; 181():109044. PubMed ID: 39180859 [TBL] [Abstract][Full Text] [Related]
3. Critical evaluation of deep neural networks for wrist fracture detection. Raisuddin AM; Vaattovaara E; Nevalainen M; Nikki M; Järvenpää E; Makkonen K; Pinola P; Palsio T; Niemensivu A; Tervonen O; Tiulpin A Sci Rep; 2021 Mar; 11(1):6006. PubMed ID: 33727668 [TBL] [Abstract][Full Text] [Related]
4. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Ju RY; Cai W Sci Rep; 2023 Nov; 13(1):20077. PubMed ID: 37973984 [TBL] [Abstract][Full Text] [Related]
5. Utilizing heat maps as explainable artificial intelligence for detecting abnormalities on wrist and elbow radiographs. Lysdahlgaard S Radiography (Lond); 2023 Oct; 29(6):1132-1138. PubMed ID: 37806069 [TBL] [Abstract][Full Text] [Related]
6. A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases. Capurro N; Pastore VP; Touijer L; Odone F; Cozzani E; Gasparini G; Parodi A Br J Dermatol; 2024 Jul; 191(2):261-266. PubMed ID: 38581445 [TBL] [Abstract][Full Text] [Related]
7. Development and optimization of AI algorithms for wrist fracture detection in children using a freely available dataset. Till T; Tschauner S; Singer G; Lichtenegger K; Till H Front Pediatr; 2023; 11():1291804. PubMed ID: 38188914 [TBL] [Abstract][Full Text] [Related]
8. Commercially-available AI algorithm improves radiologists' sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth. Jacques T; Cardot N; Ventre J; Demondion X; Cotten A Eur Radiol; 2024 May; 34(5):2885-2894. PubMed ID: 37919408 [TBL] [Abstract][Full Text] [Related]
9. Centralized contrastive loss with weakly supervised progressive feature extraction for fine-grained common thorax disease retrieval in chest x-ray. Chen F; You L; Zhao W; Zhou X Med Phys; 2023 Jun; 50(6):3560-3572. PubMed ID: 36515554 [TBL] [Abstract][Full Text] [Related]
10. Developing an artificial intelligence diagnostic tool for paediatric distal radius fractures, a proof of concept study. Aryasomayajula S; Hing CB; Siebachmeyer M; Naeini FB; Ejindu V; Leitch P; Gelfer Y; Zweiri Y Ann R Coll Surg Engl; 2023 Nov; 105(8):721-728. PubMed ID: 37642151 [TBL] [Abstract][Full Text] [Related]
11. A 3D and Explainable Artificial Intelligence Model for Evaluation of Chronic Otitis Media Based on Temporal Bone Computed Tomography: Model Development, Validation, and Clinical Application. Chen B; Li Y; Sun Y; Sun H; Wang Y; Lyu J; Guo J; Bao S; Cheng Y; Niu X; Yang L; Xu J; Yang J; Huang Y; Chi F; Liang B; Ren D J Med Internet Res; 2024 Aug; 26():e51706. PubMed ID: 39116439 [TBL] [Abstract][Full Text] [Related]
12. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling. Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays. Oka K; Shiode R; Yoshii Y; Tanaka H; Iwahashi T; Murase T J Orthop Surg Res; 2021 Nov; 16(1):694. PubMed ID: 34823550 [TBL] [Abstract][Full Text] [Related]
14. An XAI-enhanced efficientNetB0 framework for precision brain tumor detection in MRI imaging. T R M; Gupta M; T A A; Kumar V V; Geman O; Kumar V D J Neurosci Methods; 2024 Oct; 410():110227. PubMed ID: 39038716 [TBL] [Abstract][Full Text] [Related]
15. A novel approach of brain-computer interfacing (BCI) and Grad-CAM based explainable artificial intelligence: Use case scenario for smart healthcare. Lamba K; Rani S J Neurosci Methods; 2024 Aug; 408():110159. PubMed ID: 38723868 [TBL] [Abstract][Full Text] [Related]
16. Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. Cohen M; Puntonet J; Sanchez J; Kierszbaum E; Crema M; Soyer P; Dion E Eur Radiol; 2023 Jun; 33(6):3974-3983. PubMed ID: 36515712 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence for X-ray scaphoid fracture detection: a systematic review and diagnostic test accuracy meta-analysis. Kraus M; Anteby R; Konen E; Eshed I; Klang E Eur Radiol; 2024 Jul; 34(7):4341-4351. PubMed ID: 38097728 [TBL] [Abstract][Full Text] [Related]
18. Revolutionizing breast ultrasound diagnostics with EfficientNet-B7 and Explainable AI. Latha M; Kumar PS; Chandrika RR; Mahesh TR; Kumar VV; Guluwadi S BMC Med Imaging; 2024 Sep; 24(1):230. PubMed ID: 39223507 [TBL] [Abstract][Full Text] [Related]
19. The Accuracy of Artificial Intelligence Models in Hand/Wrist Fracture and Dislocation Diagnosis: A Systematic Review and Meta-Analysis. Wong CR; Zhu A; Baltzer HL JBJS Rev; 2024 Sep; 12(9):. PubMed ID: 39236148 [TBL] [Abstract][Full Text] [Related]
20. The Acutely Injured Wrist. Bruno F; Arrigoni F; Palumbo P; Natella R; Maggialetti N; Reginelli A; Splendiani A; Di Cesare E; Bazzocchi A; Guglielmi G; Masciocchi C; Barile A Radiol Clin North Am; 2019 Sep; 57(5):943-955. PubMed ID: 31351543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]