These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39180862)
1. De novo biosynthesis of betulinic acid in engineered Saccharomyces cerevisiae. Tang S; Ji W; Zhao Y; Zhang J; Wei D; Wang FQ Bioorg Chem; 2024 Nov; 152():107737. PubMed ID: 39180862 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in Tang M; Xu X; Liu Y; Li J; Du G; Lv X; Liu L ACS Synth Biol; 2024 Jun; 13(6):1798-1808. PubMed ID: 38748665 [TBL] [Abstract][Full Text] [Related]
3. Improvement of betulinic acid biosynthesis in yeast employing multiple strategies. Zhou C; Li J; Li C; Zhang Y BMC Biotechnol; 2016 Aug; 16(1):59. PubMed ID: 27534392 [TBL] [Abstract][Full Text] [Related]
4. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae. Wu J; Niu Y; Bakur A; Li H; Chen Q Molecules; 2017 Jun; 22(7):. PubMed ID: 28653998 [TBL] [Abstract][Full Text] [Related]
5. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Huang J; Zha W; An T; Dong H; Huang Y; Wang D; Yu R; Duan L; Zhang X; Peters RJ; Dai Z; Zi J Appl Microbiol Biotechnol; 2019 Sep; 103(17):7029-7039. PubMed ID: 31309269 [TBL] [Abstract][Full Text] [Related]
6. Biotechnological production of betulinic acid and derivatives and their applications. An T; Zha W; Zi J Appl Microbiol Biotechnol; 2020 Apr; 104(8):3339-3348. PubMed ID: 32112133 [TBL] [Abstract][Full Text] [Related]
7. [Construction of cell factories for production of lupeol in Saccharomyces cerevisiae]. Lin TT; Wang D; Dai ZB; Zhang XL; Huang LQ Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(6):1008-1015. PubMed ID: 28875662 [TBL] [Abstract][Full Text] [Related]
8. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Li J; Zhang Y Appl Microbiol Biotechnol; 2014 Apr; 98(7):3081-9. PubMed ID: 24389702 [TBL] [Abstract][Full Text] [Related]
9. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Czarnotta E; Dianat M; Korf M; Granica F; Merz J; Maury J; Baallal Jacobsen SA; Förster J; Ebert BE; Blank LM Biotechnol Bioeng; 2017 Nov; 114(11):2528-2538. PubMed ID: 28688186 [TBL] [Abstract][Full Text] [Related]
10. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Jin CC; Zhang JL; Song H; Cao YX Microb Cell Fact; 2019 May; 18(1):77. PubMed ID: 31053076 [TBL] [Abstract][Full Text] [Related]
11. Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen. Li J; Zhang Y J Biosci Bioeng; 2015 Jan; 119(1):77-81. PubMed ID: 25043336 [TBL] [Abstract][Full Text] [Related]
12. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae. Tu S; Xiao F; Mei C; Li S; Qiao P; Huang Z; He Y; Gong Z; Zhong W Appl Microbiol Biotechnol; 2023 Jun; 107(12):3899-3909. PubMed ID: 37148336 [TBL] [Abstract][Full Text] [Related]
13. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Fukushima EO; Seki H; Ohyama K; Ono E; Umemoto N; Mizutani M; Saito K; Muranaka T Plant Cell Physiol; 2011 Dec; 52(12):2050-61. PubMed ID: 22039103 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Huang L; Li J; Ye H; Li C; Wang H; Liu B; Zhang Y Planta; 2012 Nov; 236(5):1571-81. PubMed ID: 22837051 [TBL] [Abstract][Full Text] [Related]
15. Betulinic acid mitigates oxidative stress-mediated apoptosis and enhances longevity in the yeast Sudharshan SJ; Krishna Narayanan A; Princilly J; Dyavaiah M; Nagegowda DA Free Radic Res; 2022; 56(11-12):699-712. PubMed ID: 36624963 [TBL] [Abstract][Full Text] [Related]
16. Expression characteristics and function of CAS and a new beta-amyrin synthase in triterpenoid synthesis in birch (Betula platyphylla Suk.). Yin J; Yang J; Ma H; Liang T; Li Y; Xiao J; Tian H; Xu Z; Zhan Y Plant Sci; 2020 May; 294():110433. PubMed ID: 32234222 [TBL] [Abstract][Full Text] [Related]
17. Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues. Cunha AB; Batista R; Castro MÁ; David JM Molecules; 2021 Feb; 26(4):. PubMed ID: 33670791 [TBL] [Abstract][Full Text] [Related]
18. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis. Yin J; Sun L; Li Y; Xiao J; Wang S; Yang J; Qu Z; Zhan Y BMC Plant Biol; 2020 Aug; 20(1):374. PubMed ID: 32787836 [TBL] [Abstract][Full Text] [Related]
19. Heterologous biosynthesis of taraxerol by engineered Saccharomyces cerevisiae. Tan J; Zhang C; Pai H; Lu W FEMS Microbiol Lett; 2022 Aug; 369(1):. PubMed ID: 35896500 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis and evaluation of antiproliferative activity of fluorinated betulinic acid. Li J; Chang LC; Hsieh KY; Hsu PL; Capuzzi SJ; Zhang YC; Li KP; Morris-Natschke SL; Goto M; Lee KH Bioorg Med Chem; 2019 Jul; 27(13):2871-2882. PubMed ID: 31126820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]