These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39181665)

  • 1. Hydrogen production from dry reforming of methane, using CO
    González-González YB; Plascencia-Hernández F; Mendoza-Cruz R; Pfeiffer H
    J Environ Sci (China); 2025 Mar; 149():535-550. PubMed ID: 39181665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies.
    Fan MS; Abdullah AZ; Bhatia S
    ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of carbon dioxide in the feed stream of tri-reforming of methane process compared to the partial oxidation of methane.
    Soares ANB; Roseno KTC; Giudici R; Schmal M
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):19111-19119. PubMed ID: 36223012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-based cerium zirconate inorganic complex structures for CO
    Martín-Espejo JL; Merkouri LP; Gándara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L
    J Environ Sci (China); 2024 Jun; 140():12-23. PubMed ID: 38331494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-promoted zirconia-alumina supported Ni catalyst for highly efficient and cost-effective hydrogen production via dry reforming of methane.
    Al-Fatesh AS; Patel N; Srivastava VK; Osman AI; Rooney DW; Fakeeha AH; Abasaeed AE; Alotibi MF; Kumar R
    J Environ Sci (China); 2025 Feb; 148():274-282. PubMed ID: 39095164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst.
    Broda M; Manovic V; Imtiaz Q; Kierzkowska AM; Anthony EJ; Müller CR
    Environ Sci Technol; 2013 Jun; 47(11):6007-14. PubMed ID: 23675760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of NiO into the CO
    González A; Martínez-Cruz MA; Alcántar-Vázquez B; Portillo-Vélez NS; Pfeiffer H; Lara-García HA
    Heliyon; 2024 Jan; 10(2):e24645. PubMed ID: 38304793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tri-reforming of methane over Ni/ZrO
    Pandey A; Biswas P
    Environ Sci Pollut Res Int; 2024 May; 31(24):35069-35082. PubMed ID: 38714619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.
    Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET
    ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Study on the Effect of Chromium Addition to Ni-Based Catalysts for the Steam-CO2 Reforming of Methane.
    Park YH; Li P; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1526-30. PubMed ID: 27433614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of dry (CO2) reforming of methane over noble metal catalysts.
    Pakhare D; Spivey J
    Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane reactor.
    Kathiraser Y; Wang Z; Kawi S
    Environ Sci Technol; 2013 Dec; 47(24):14510-7. PubMed ID: 24274713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured Nickel Aluminate as a Key Intermediate for the Production of Highly Dispersed and Stable Nickel Nanoparticles Supported within Mesoporous Alumina for Dry Reforming of Methane.
    Karam L; Reboul J; El Hassan N; Nelayah J; Massiani P
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry.
    Cleiren E; Heijkers S; Ramakers M; Bogaerts A
    ChemSusChem; 2017 Oct; 10(20):4025-4036. PubMed ID: 28834403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.
    Rahemi N; Haghighi M; Babaluo AA; Jafari MF; Estifaee P
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4896-908. PubMed ID: 23901509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO
    Alabi WO
    Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.