These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Divergent fate of coccolithophores in a warming tropical ecosystem. Frada MJ; Keuter S; Koplovitz G; Avrahami Y Glob Chang Biol; 2022 Feb; 28(4):1560-1568. PubMed ID: 34808010 [TBL] [Abstract][Full Text] [Related]
24. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO₂. Rivero-Calle S; Gnanadesikan A; Del Castillo CE; Balch WM; Guikema SD Science; 2015 Dec; 350(6267):1533-7. PubMed ID: 26612836 [TBL] [Abstract][Full Text] [Related]
25. Cell-Penetrating Peptide Delivery of Nucleic Acid Cargo to Flavin C; Chatterjee A ACS Synth Biol; 2024 Jan; 13(1):77-84. PubMed ID: 38147049 [TBL] [Abstract][Full Text] [Related]
26. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Benner I; Diner RE; Lefebvre SC; Li D; Komada T; Carpenter EJ; Stillman JH Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20130049. PubMed ID: 23980248 [TBL] [Abstract][Full Text] [Related]
27. Allometry of carbon and nitrogen content and growth rate in a diverse range of coccolithophores. Villiot N; Poulton AJ; Butcher ET; Daniels LR; Coggins A J Plankton Res; 2021; 43(4):511-526. PubMed ID: 34326702 [TBL] [Abstract][Full Text] [Related]
28. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO Tong S; Gao K; Hutchins DA Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310 [TBL] [Abstract][Full Text] [Related]
29. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. Bach LT; Mackinder LCM; Schulz KG; Wheeler G; Schroeder DC; Brownlee C; Riebesell U New Phytol; 2013 Jul; 199(1):121-134. PubMed ID: 23496417 [TBL] [Abstract][Full Text] [Related]
30. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Lacroix F; Ilyina T; Mathis M; Laruelle GG; Regnier P Glob Chang Biol; 2021 Nov; 27(21):5491-5513. PubMed ID: 34351039 [TBL] [Abstract][Full Text] [Related]
31. Links between fish abundance and ocean biogeochemistry as recorded in marine sediments. Kavanagh L; Galbraith E PLoS One; 2018; 13(8):e0199420. PubMed ID: 30067749 [TBL] [Abstract][Full Text] [Related]
32. Contribution of fish to the marine inorganic carbon cycle. Wilson RW; Millero FJ; Taylor JR; Walsh PJ; Christensen V; Jennings S; Grosell M Science; 2009 Jan; 323(5912):359-62. PubMed ID: 19150840 [TBL] [Abstract][Full Text] [Related]
33. Responses of the Emiliania huxleyi proteome to ocean acidification. Jones BM; Iglesias-Rodriguez MD; Skipp PJ; Edwards RJ; Greaves MJ; Young JR; Elderfield H; O'Connor CD PLoS One; 2013; 8(4):e61868. PubMed ID: 23593500 [TBL] [Abstract][Full Text] [Related]
34. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans. Estrada M; Delgado M; Blasco D; Latasa M; Cabello AM; Benítez-Barrios V; Fraile-Nuez E; Mozetič P; Vidal M PLoS One; 2016; 11(3):e0151699. PubMed ID: 26982180 [TBL] [Abstract][Full Text] [Related]
35. Disentangling the Effects of Ocean Carbonation and Acidification on Elemental Contents and Macromolecules of the Coccolithophore Xie E; Xu K; Li Z; Li W; Yi X; Li H; Han Y; Zhang H; Zhang Y Front Microbiol; 2021; 12():737454. PubMed ID: 34745039 [TBL] [Abstract][Full Text] [Related]
36. Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom. Collister BL; Zimmerman RC; Hill VJ; Sukenik CI; Balch WM Appl Opt; 2020 May; 59(15):4650-4662. PubMed ID: 32543574 [TBL] [Abstract][Full Text] [Related]
37. Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo-cell volume. Müller MN; Brandini FP; Trull TW; Hallegraeff GM Geobiology; 2021 Jan; 19(1):63-74. PubMed ID: 32931664 [TBL] [Abstract][Full Text] [Related]
38. Bio-optical evidence for increasing Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820 [TBL] [Abstract][Full Text] [Related]
39. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Lohbeck KT; Riebesell U; Reusch TB Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827439 [TBL] [Abstract][Full Text] [Related]
40. Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean. Richardson TL Ann Rev Mar Sci; 2019 Jan; 11():57-74. PubMed ID: 29996063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]