These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39182296)
1. Rainwater-borne H Fan K; Chen L; Li H; Lim JW; Lin C; Qin J; Qiu R J Hazard Mater; 2024 Oct; 478():135633. PubMed ID: 39182296 [TBL] [Abstract][Full Text] [Related]
2. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain. Qin J; Li H; Lin C Ecotoxicol Environ Saf; 2016 Aug; 130():4-10. PubMed ID: 27060198 [TBL] [Abstract][Full Text] [Related]
3. The impact of rainwater-borne H Ying J; Fan K; Niazi NK; Gustave W; Li H; Wang H; Bolan NS; Qin J; Qiu R Sci Total Environ; 2024 Jan; 908():168300. PubMed ID: 37939935 [TBL] [Abstract][Full Text] [Related]
4. Rainwater input reduces greenhouse gas emission and arsenic uptake in paddy rice systems. Qin J; Ying J; Li H; Qiu R; Lin C Sci Total Environ; 2023 Dec; 902():166096. PubMed ID: 37558067 [TBL] [Abstract][Full Text] [Related]
5. Soil attribute regulates assimilation of roxarsone metabolites by rice (Oryza sativa L.). Yao L; Carey MP; Zhong J; Bai C; Zhou C; Meharg AA Ecotoxicol Environ Saf; 2019 Nov; 184():109660. PubMed ID: 31520949 [TBL] [Abstract][Full Text] [Related]
6. Effect of rainwater-borne hydrogen peroxide on manure-derived Cu and Zn speciation distribution and bioavailability in rice-soil system. Yang X; Yu T; Zhang W; Qin J; Li H Ecotoxicol Environ Saf; 2019 Aug; 177():1-6. PubMed ID: 30954007 [TBL] [Abstract][Full Text] [Related]
7. Roxarsone transformation and its impacts on soil enzyme activity in paddy soils: A new insight into water flooding effects. Zhao YP; Cui JL; Fang LP; An YL; Gan SC; Guo PR; Chen JH Environ Res; 2021 Nov; 202():111636. PubMed ID: 34245733 [TBL] [Abstract][Full Text] [Related]
8. Control of arsenic mobilization in paddy soils by manganese and iron oxides. Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611 [TBL] [Abstract][Full Text] [Related]
9. Effect of atmospheric H Lin X; Li H; Ai S Ecotoxicol Environ Saf; 2021 Jul; 217():112100. PubMed ID: 33933890 [TBL] [Abstract][Full Text] [Related]
10. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344 [TBL] [Abstract][Full Text] [Related]
11. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692 [TBL] [Abstract][Full Text] [Related]
12. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
13. Delivery of roxarsone via chicken diet→chicken→chicken manure→soil→rice plant. Yao L; Huang L; He Z; Zhou C; Lu W; Bai C Sci Total Environ; 2016 Oct; 566-567():1152-1158. PubMed ID: 27265740 [TBL] [Abstract][Full Text] [Related]
14. A novel calcium-based magnetic biochar reduces the accumulation of As in grains of rice (Oryza sativa L.) in As-contaminated paddy soils. Wu J; Li Z; Wang L; Liu X; Tang C; Xu J J Hazard Mater; 2020 Jul; 394():122507. PubMed ID: 32200238 [TBL] [Abstract][Full Text] [Related]
15. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Liu C; Yu HY; Liu C; Li F; Xu X; Wang Q Environ Pollut; 2015 Apr; 199():95-101. PubMed ID: 25638690 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Ye WL; Khan MA; McGrath SP; Zhao FJ Environ Pollut; 2011 Dec; 159(12):3739-43. PubMed ID: 21840633 [TBL] [Abstract][Full Text] [Related]
17. Sorption of roxarsone onto soils with different physicochemical properties. Fu QL; He JZ; Blaney L; Zhou DM Chemosphere; 2016 Sep; 159():103-112. PubMed ID: 27281543 [TBL] [Abstract][Full Text] [Related]
18. Effect of rainwater oxidants on As volatilization in the soil-rice system. Lin X; Li H; Li Y Chemosphere; 2022 Feb; 288(Pt 2):132256. PubMed ID: 34627820 [TBL] [Abstract][Full Text] [Related]
19. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Rutherford DW; Bednar AJ; Garbarino JR; Needham R; Staver KW; Wershaw RL Environ Sci Technol; 2003 Apr; 37(8):1515-20. PubMed ID: 12731832 [TBL] [Abstract][Full Text] [Related]
20. Soil calcium significantly promotes uptake of inorganic arsenic by garland chrysanthemum (ChrysanthemumL coronarium) fertilized with chicken manure bearing roxarsone and its metabolites. Yao L; Huang L; Bai C; He Z; Zhou C Environ Sci Pollut Res Int; 2017 Jul; 24(19):16429-16439. PubMed ID: 28551741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]