These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39182457)

  • 1. Do long-term acoustic-phonetic features and mel-frequency cepstral coefficients provide complementary speaker-specific information for forensic voice comparison?
    Chan RKW; Wang BX
    Forensic Sci Int; 2024 Oct; 363():112199. PubMed ID: 39182457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of human-supervised formant-trajectory measurement for forensic voice comparison.
    Zhang C; Morrison GS; Ochoa F; Enzinger E
    J Acoust Soc Am; 2013 Jan; 133(1):EL54-60. PubMed ID: 23298018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical test of the performance of an acoustic-phonetic approach to forensic voice comparison under conditions similar to those of a real case.
    Enzinger E; Morrison GS
    Forensic Sci Int; 2017 Aug; 277():30-40. PubMed ID: 28575731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidential value of voice quality acoustics in forensic voice comparison.
    Chan RKW
    Forensic Sci Int; 2023 Jul; 348():111725. PubMed ID: 37182279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech.
    Lee JW; Choi JY; Kang HG
    J Acoust Soc Am; 2012 Feb; 131(2):1536-46. PubMed ID: 22352523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Issues in forensic voice.
    Hollien H; Huntley Bahr R; Harnsberger JD
    J Voice; 2014 Mar; 28(2):170-84. PubMed ID: 24176301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.
    Shao X; Milner B
    J Acoust Soc Am; 2005 Aug; 118(2):1134-43. PubMed ID: 16158667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Euclidean Distances as measures of speaker similarity including identical twin pairs: A forensic investigation using source and filter voice characteristics.
    San Segundo E; Tsanas A; Gómez-Vilda P
    Forensic Sci Int; 2017 Jan; 270():25-38. PubMed ID: 27912151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic analysis of vowel formant frequencies in genetically-related and non-genetically related speakers with implications for forensic speaker comparison.
    Cavalcanti JC; Eriksson A; Barbosa PA
    PLoS One; 2021; 16(2):e0246645. PubMed ID: 33600430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework.
    Chen Z; Zhu P; Qiu W; Guo J; Li Y
    Int J Lang Commun Disord; 2023 Mar; 58(2):279-294. PubMed ID: 36117378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic-phonetic features for the automatic classification of fricatives.
    Ali AM; Van der Spiegel J; Mueller P
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2217-35. PubMed ID: 11386573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards understanding speaker discrimination abilities in humans and machines for text-independent short utterances of different speech styles.
    Park SJ; Yeung G; Vesselinova N; Kreiman J; Keating PA; Alwan A
    J Acoust Soc Am; 2018 Jul; 144(1):375. PubMed ID: 30075658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra- and inter-speaker variation in eight Russian fricativesa).
    Ulrich N; Pellegrino F; Allassonnière-Tang M
    J Acoust Soc Am; 2023 Apr; 153(4):2285. PubMed ID: 37092935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic classification and speaker identification of African elephant (Loxodonta africana) vocalizations.
    Clemins PJ; Johnson MT; Leong KM; Savage A
    J Acoust Soc Am; 2005 Feb; 117(2):956-63. PubMed ID: 15759714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition.
    Juneja A; Espy-Wilson C
    J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidirectional regression (MDR)-based features for automatic voice disorder detection.
    Muhammad G; Mesallam TA; Malki KH; Farahat M; Mahmood A; Alsulaiman M
    J Voice; 2012 Nov; 26(6):817.e19-27. PubMed ID: 23177748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust speaker identification via fusion of subglottal resonances and cepstral features.
    Guo J; Yang R; Arsikere H; Alwan A
    J Acoust Soc Am; 2017 Apr; 141(4):EL420. PubMed ID: 28464674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic analysis of misarticulated trills in cleft lip and palate children.
    Vikram CM; Macha SK; Kalita S; Mahadeva Prasanna SR
    J Acoust Soc Am; 2018 Jun; 143(6):EL474. PubMed ID: 29960457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology?
    Ali Z; Alsulaiman M; Muhammad G; Elamvazuthi I; Al-Nasheri A; Mesallam TA; Farahat M; Malki KH
    J Voice; 2017 May; 31(3):386.e1-386.e8. PubMed ID: 27745756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.