These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39183895)

  • 1. Design, Modeling, and Control of a Coaxially Aligned Steerable (COAST) Guidewire Robot.
    Jeong S; Chitalia Y; Desai JP
    IEEE Robot Autom Lett; 2020 Jul; 5(3):4947-4954. PubMed ID: 39183895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based Design of the COAST Guidewire Robot for Large Deflection.
    Chitalia Y; Sarma A; Brumfiel TA; Deaton NJ; Sheft M; Desai JP;
    IEEE Robot Autom Lett; 2023 Sep; 8(9):5345-5352. PubMed ID: 37614723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic Modeling and Jacobian-based Control of the COAST Guidewire Robot.
    Sarma A; Brumfiel TA; Chitalia Y; Desai JP
    IEEE Trans Med Robot Bionics; 2022 Nov; 4(4):967-975. PubMed ID: 37790986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Shape and Tip Force Sensing for the COAST Guidewire Robot.
    Deaton NJ; Brumfiel TA; Sarma A; Desai JP
    IEEE Robot Autom Lett; 2023 Jun; 8(6):3725-3731. PubMed ID: 38269146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time Pose Tracking for a Continuum Guidewire Robot under Fluoroscopic Imaging.
    Ravigopal SR; Sarma A; Brumfiel TA; Desai JP
    IEEE Trans Med Robot Bionics; 2023 May; 5(2):230-241. PubMed ID: 38250652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluoroscopic Image-Based 3-D Environment Reconstruction and Automated Path Planning for a Robotically Steerable Guidewire.
    Ravigopal SR; Brumfiel TA; Sarma A; Desai JP
    IEEE Robot Autom Lett; 2022 Oct; 7(4):11918-11925. PubMed ID: 36275193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Telescopic Tendon-Driven Needle Robot for Minimally Invasive Neurosurgery.
    Rezaeian S; Badie B; Sheng J
    Rep U S; 2023 Oct; 2023():10301-10307. PubMed ID: 39082055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards FBG-Based Shape Sensing for Micro-scale and Meso-Scale Continuum Robots with Large Deflection.
    Chitalia Y; Deaton NJ; Jeong S; Rahman N; Desai JP
    IEEE Robot Autom Lett; 2020 Apr; 5(2):1712-1719. PubMed ID: 32258410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment.
    Gilbert HB; Neimat J; Webster RJ
    IEEE Trans Robot; 2015 Apr; 31(2):246-258. PubMed ID: 26622208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Soft, Steerable Continuum Robot That Grows via Tip Extension.
    Greer JD; Morimoto TK; Okamura AM; Hawkes EW
    Soft Robot; 2019 Feb; 6(1):95-108. PubMed ID: 30339050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards A Physics-based Model for Steerable Eversion Growing Robots.
    Wu Z; De Iturrate Reyzabal M; Sadati SMH; Liu H; Ourselin S; Leff D; Katzschmann RK; Rhode K; Bergeles C
    IEEE Robot Autom Lett; 2023 Feb; 8(2):1005-1012. PubMed ID: 36733442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Operator Control of a Robotic Tool for Bidirectional Manipulation in Targeted Prostate Biopsy.
    Padasdao B; Batsaikhan Z; Lafreniere S; Rabiei M; Konh B
    Int Symp Med Robot; 2022 Apr; 2022():. PubMed ID: 36644643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Optimization of Printed Multi-Layered Electroactive Actuators Used for Steerable Guidewire in Micro-Invasive Surgery.
    Toinet S; Benwadih M; Szambolics H; Revenant C; Alincant D; Bordet M; Capsal JF; Della-Schiava N; Le MQ; Cottinet PJ
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design Optimization of Concentric Tube Robots Based on Task and Anatomical Constraints.
    Bedell C; Lock J; Gosline A; Dupont PE
    IEEE Int Conf Robot Autom; 2011 May; 2011():398-403. PubMed ID: 22229108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and experimental analysis of wire-driven continuum surgical robot.
    Jiang Q; Wang F; Jiang S
    J Robot Surg; 2024 Feb; 18(1):98. PubMed ID: 38413461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentric Tube Robot Design and Optimization Based on Task and Anatomical Constraints.
    Bergeles C; Gosline AH; Vasilyev NV; Codd PJ; Del Nido PJ; Dupont PE
    IEEE Trans Robot; 2015 Feb; 31(1):67-84. PubMed ID: 26380575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optic Nerve Sheath Fenestration With a Multi-Arm Continuum Robot.
    Mitros Z; Sadati S; Seneci C; Bloch E; Leibrandt K; Khadem M; da Cruz L; Bergeles C
    IEEE Robot Autom Lett; 2020 Jul; 5(3):4874-4881. PubMed ID: 34109274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model.
    Kato T; Okumura I; Song SE; Golby AJ; Hata N
    IEEE ASME Trans Mechatron; 2015 Oct; 20(5):2252-2263. PubMed ID: 26380544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasistatic Modeling of Concentric Tube Robots with External Loads.
    Lock J; Laing G; Mahvash M; Dupont PE
    Rep U S; 2010 Dec; 2010():2325-2332. PubMed ID: 21278853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transbronchial biopsy catheter enhanced by a multisection continuum robot with follow-the-leader motion.
    Dupourqué L; Masaki F; Colson YL; Kato T; Hata N
    Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):2021-2029. PubMed ID: 31289997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.