These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39184966)
1. Fractional-Order Modeling of Arterial Compliance in Vascular Aging: A Computational Biomechanical Approach for Investigating Cardiovascular Dynamics. Bahloul MA; Aboelkassem Y; Belkhatir Z; Laleg-Kirati TM IEEE Open J Eng Med Biol; 2024; 5():650-660. PubMed ID: 39184966 [No Abstract] [Full Text] [Related]
2. Assessment of Fractional-Order Arterial Windkessel as a Model of Aortic Input Impedance. Bahloul MA; Laleg-Kirati TM IEEE Open J Eng Med Biol; 2020; 1():123-132. PubMed ID: 35402942 [No Abstract] [Full Text] [Related]
3. Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an Bahloul MA; Laleg Kirati TM Physiol Meas; 2021 May; 42(4):. PubMed ID: 33761470 [No Abstract] [Full Text] [Related]
4. Towards Characterization of the Complex and Frequency-dependent Arterial Compliance based on Fractional-order Capacitor. Bahloul MA; Aboelkassem Y; Laleg-Kirati TM Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5559-5565. PubMed ID: 34892384 [TBL] [Abstract][Full Text] [Related]
5. Human Hypertension Blood Flow Model Using Fractional Calculus. Bahloul MA; Aboelkassem Y; Laleg-Kirati TM Front Physiol; 2022; 13():838593. PubMed ID: 35392372 [TBL] [Abstract][Full Text] [Related]
6. Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance. Bahloul MA; Laleg Kirati TM Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5018-5023. PubMed ID: 31946987 [TBL] [Abstract][Full Text] [Related]
7. Three-Element Fractional-Order Viscoelastic Arterial Windkessel Model. Bahloul MA; Laleg-Kirati TM Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5261-5266. PubMed ID: 30441525 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive method for determination of arterial compliance using Doppler echocardiography and subclavian pulse tracings. Validation and clinical application of a physiological model of the circulation. Marcus RH; Korcarz C; McCray G; Neumann A; Murphy M; Borow K; Weinert L; Bednarz J; Gretler DD; Spencer KT Circulation; 1994 Jun; 89(6):2688-99. PubMed ID: 8205683 [TBL] [Abstract][Full Text] [Related]
9. Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs. Lowe D; Hettrick DA; Pagel PS; Warltier DC Anesthesiology; 1996 Feb; 84(2):368-76. PubMed ID: 8602668 [TBL] [Abstract][Full Text] [Related]
10. Complex and frequency-dependent compliance of viscoelastic windkessel resolves contradictions in elastic windkessels. Burattini R; Natalucci S Med Eng Phys; 1998 Oct; 20(7):502-14. PubMed ID: 9832026 [TBL] [Abstract][Full Text] [Related]
12. Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: a model based study. Burattini R; Gnudi G; Westerhof N; Fioretti S Comput Biomed Res; 1987 Apr; 20(2):154-65. PubMed ID: 3595097 [TBL] [Abstract][Full Text] [Related]
13. Total arterial inertance as the fourth element of the windkessel model. Stergiopulos N; Westerhof BE; Westerhof N Am J Physiol; 1999 Jan; 276(1):H81-8. PubMed ID: 9887020 [TBL] [Abstract][Full Text] [Related]
14. Ventricular/vascular coupling and regional arterial dynamics in the chronically hypertensive baboon: correlation with cardiovascular structural adaptation. Latham RD; Rubal BJ; Sipkema P; Westerhof N; Virmani R; Robinowitz M; Walsh RA Circ Res; 1988 Oct; 63(4):798-811. PubMed ID: 3168180 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of isoflurane and halothane on aortic input impedance quantified using a three-element Windkessel model. Hettrick DA; Pagel PS; Warltier DC Anesthesiology; 1995 Aug; 83(2):361-73. PubMed ID: 7631959 [TBL] [Abstract][Full Text] [Related]
16. Development of systemic arterial mechanical properties from infancy to adulthood interpreted by four-element windkessel models. Burattini R; Di Salvia PO J Appl Physiol (1985); 2007 Jul; 103(1):66-79. PubMed ID: 17303709 [TBL] [Abstract][Full Text] [Related]
17. Systolic hypertension mechanisms: effect of global and local proximal aorta stiffening on pulse pressure. Reymond P; Westerhof N; Stergiopulos N Ann Biomed Eng; 2012 Mar; 40(3):742-9. PubMed ID: 22016326 [TBL] [Abstract][Full Text] [Related]
18. On the importance of the nonuniform aortic stiffening in the hemodynamics of physiological aging. Pagoulatou SZ; Bikia V; Trachet B; Papaioannou TG; Protogerou AD; Stergiopulos N Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H1125-H1133. PubMed ID: 31538801 [TBL] [Abstract][Full Text] [Related]
19. Estimation of arterial compliance in aortic regurgitation: three methods evaluated in pigs. Slørdahl SA; Piene H; Solbakken JE; Rossvoll O; Samstad SO; Angelsen BA Med Biol Eng Comput; 1990 Jul; 28(4):293-9. PubMed ID: 2246926 [TBL] [Abstract][Full Text] [Related]
20. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Wang JJ; Flewitt JA; Shrive NG; Parker KH; Tyberg JV Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H154-62. PubMed ID: 16113064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]