These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 39185407)
1. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ Karwig L; Moore PF; Alber G; Eschke M Front Immunol; 2024; 15():1439213. PubMed ID: 39185407 [TBL] [Abstract][Full Text] [Related]
2. Canine peripheral non-conventional TCRαβ Protschka M; Di Placido D; Moore PF; Büttner M; Alber G; Eschke M Front Immunol; 2024; 15():1400550. PubMed ID: 38835756 [TBL] [Abstract][Full Text] [Related]
3. Distinct Features of Canine Non-conventional CD4 Rabiger FV; Rothe K; von Buttlar H; Bismarck D; Büttner M; Moore PF; Eschke M; Alber G Front Immunol; 2019; 10():2748. PubMed ID: 31824515 [TBL] [Abstract][Full Text] [Related]
4. Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients. Schuler PJ; Schilling B; Harasymczuk M; Hoffmann TK; Johnson J; Lang S; Whiteside TL Eur J Immunol; 2012 Jul; 42(7):1876-85. PubMed ID: 22585562 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic and functional characterization of a CD4(+) CD25(high) FOXP3(high) regulatory T-cell population in the dog. Pinheiro D; Singh Y; Grant CR; Appleton RC; Sacchini F; Walker KR; Chadbourne AH; Palmer CA; Armitage-Chan E; Thompson I; Williamson L; Cunningham F; Garden OA Immunology; 2011 Jan; 132(1):111-22. PubMed ID: 20880379 [TBL] [Abstract][Full Text] [Related]
6. Reduced frequency and functional defects of CD4 Luo L; Zeng X; Huang Z; Luo S; Qin L; Li S Reprod Biol Endocrinol; 2020 Jun; 18(1):62. PubMed ID: 32522204 [TBL] [Abstract][Full Text] [Related]
7. Outgrowth of CD4low/negCD25+ T cells with suppressor function in CD4+CD25+ T cell cultures upon polyclonal stimulation ex vivo. Vogtenhuber C; O'Shaughnessy MJ; Vignali DA; Blazar BR J Immunol; 2008 Dec; 181(12):8767-75. PubMed ID: 19050298 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the frequencies and functions of CD4 Zare M; Namavar Jahromi B; Gharesi-Fard B J Reprod Immunol; 2019 Jun; 133():43-51. PubMed ID: 31255887 [TBL] [Abstract][Full Text] [Related]
9. Ex-vivo expanded baboon CD4+ CD25 Hi Treg cells suppress baboon anti-pig T and B cell immune response. Singh AK; Seavey CN; Horvath KA; Mohiuddin MM Xenotransplantation; 2012; 19(2):102-11. PubMed ID: 22497512 [TBL] [Abstract][Full Text] [Related]
10. 2-Gy whole-body irradiation significantly alters the balance of CD4+ CD25- T effector cells and CD4+ CD25+ Foxp3+ T regulatory cells in mice. Qu Y; Zhang B; Liu S; Zhang A; Wu T; Zhao Y Cell Mol Immunol; 2010 Nov; 7(6):419-27. PubMed ID: 20871628 [TBL] [Abstract][Full Text] [Related]
11. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Strauss L; Bergmann C; Szczepanski M; Gooding W; Johnson JT; Whiteside TL Clin Cancer Res; 2007 Aug; 13(15 Pt 1):4345-54. PubMed ID: 17671115 [TBL] [Abstract][Full Text] [Related]
12. Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+ regulatory T cells in human peripheral blood. Chen X; Subleski JJ; Hamano R; Howard OM; Wiltrout RH; Oppenheim JJ Eur J Immunol; 2010 Apr; 40(4):1099-106. PubMed ID: 20127680 [TBL] [Abstract][Full Text] [Related]
13. CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Pesenacker AM; Bending D; Ursu S; Wu Q; Nistala K; Wedderburn LR Blood; 2013 Apr; 121(14):2647-58. PubMed ID: 23355538 [TBL] [Abstract][Full Text] [Related]
14. Subpopulations of bovine WC1(+) gammadelta T cells rather than CD4(+)CD25(high) Foxp3(+) T cells act as immune regulatory cells ex vivo. Hoek A; Rutten VP; Kool J; Arkesteijn GJ; Bouwstra RJ; Van Rhijn I; Koets AP Vet Res; 2009; 40(1):6. PubMed ID: 18928784 [TBL] [Abstract][Full Text] [Related]
15. Canine tissue-associated CD4+CD8α+ double-positive T cells are an activated T cell subpopulation with heterogeneous functional potential. Rabiger FV; Bismarck D; Protschka M; Köhler G; Moore PF; Büttner M; von Buttlar H; Alber G; Eschke M PLoS One; 2019; 14(3):e0213597. PubMed ID: 30865691 [TBL] [Abstract][Full Text] [Related]
16. Alloactivation of Naïve CD4 Verma ND; Robinson CM; Carter N; Wilcox P; Tran GT; Wang C; Sharland A; Nomura M; Plain KM; Bishop GA; Hodgkinson SJ; Hall BM Front Immunol; 2019; 10():2397. PubMed ID: 31681288 [TBL] [Abstract][Full Text] [Related]
17. Rapamycin promotes the enrichment of CD4(+)CD25(hi)FoxP3(+) T regulatory cells from naïve CD4(+) T cells of baboon that suppress antiporcine xenogenic response in vitro. Singh AK; Horvath KA; Mohiuddin MM Transplant Proc; 2009; 41(1):418-21. PubMed ID: 19249569 [TBL] [Abstract][Full Text] [Related]
18. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4 Polanczyk MJ; Walker E; Haley D; Guerrouahen BS; Akporiaye ET J Transl Med; 2019 Jul; 17(1):219. PubMed ID: 31288845 [TBL] [Abstract][Full Text] [Related]
20. Direct detection of FoxP3 expression in thymic double-negative CD4-CD8- cells by flow cytometry. Liu G; Li Z; Wei Y; Lin Y; Yang C; Liu T Sci Rep; 2014 Jul; 4():5781. PubMed ID: 25060864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]