These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 39185478)
1. Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine. Lenaeus M; Gamal El-Din TM; Tonggu L; Zheng N; Catterall WA Nat Cardiovasc Res; 2023 Jun; 2(6):587-594. PubMed ID: 39185478 [No Abstract] [Full Text] [Related]
2. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Fredj S; Sampson KJ; Liu H; Kass RS Br J Pharmacol; 2006 May; 148(1):16-24. PubMed ID: 16520744 [TBL] [Abstract][Full Text] [Related]
3. State-Dependent Inhibition of Nav1.8 Sodium Channels by VX-150 and VX-548. Vaelli P; Fujita A; Jo S; Zhang HB; Osorno T; Ma X; Bean BP Mol Pharmacol; 2024 Nov; 106(6):298-308. PubMed ID: 39322410 [TBL] [Abstract][Full Text] [Related]
4. Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation. Zhu W; Mazzanti A; Voelker TL; Hou P; Moreno JD; Angsutararux P; Naegle KM; Priori SG; Silva JR Circ Res; 2019 Feb; 124(4):539-552. PubMed ID: 30566038 [TBL] [Abstract][Full Text] [Related]
5. Discovery of triazolopyridinone GS-462808, a late sodium current inhibitor (Late INai) of the cardiac Nav1.5 channel with improved efficacy and potency relative to ranolazine. Koltun DO; Parkhill EQ; Elzein E; Kobayashi T; Jiang RH; Li X; Perry TD; Avila B; Wang WQ; Hirakawa R; Smith-Maxwell C; Wu L; Dhalla AK; Rajamani S; Mollova N; Stafford B; Tang J; Belardinelli L; Zablocki JA Bioorg Med Chem Lett; 2016 Jul; 26(13):3207-3211. PubMed ID: 27038498 [TBL] [Abstract][Full Text] [Related]
6. Discovery of triazolopyridine GS-458967, a late sodium current inhibitor (Late INai) of the cardiac NaV 1.5 channel with improved efficacy and potency relative to ranolazine. Koltun DO; Parkhill EQ; Elzein E; Kobayashi T; Notte GT; Kalla R; Jiang RH; Li X; Perry TD; Avila B; Wang WQ; Smith-Maxwell C; Dhalla AK; Rajamani S; Stafford B; Tang J; Mollova N; Belardinelli L; Zablocki JA Bioorg Med Chem Lett; 2016 Jul; 26(13):3202-3206. PubMed ID: 27080178 [TBL] [Abstract][Full Text] [Related]
7. Modulation of the effects of class Ib antiarrhythmics on cardiac NaV1.5-encoded channels by accessory NaVβ subunits. Zhu W; Wang W; Angsutararux P; Mellor RL; Isom LL; Nerbonne JM; Silva JR JCI Insight; 2021 Aug; 6(15):. PubMed ID: 34156986 [TBL] [Abstract][Full Text] [Related]
8. Late INa Inhibition as an Antiarrhythmic Strategy. Burashnikov A J Cardiovasc Pharmacol; 2017 Sep; 70(3):159-167. PubMed ID: 28654510 [TBL] [Abstract][Full Text] [Related]
9. Molecular charge associated with antiarrhythmic actions in a series of amino-2-cyclohexyl ester derivatives. Pugsley MK; Yong SL; Goldin AL; Hayes ES; Walker MJA Eur J Pharmacol; 2019 Feb; 844():241-252. PubMed ID: 30571955 [TBL] [Abstract][Full Text] [Related]
11. Role of protein domains in trafficking and localization of the voltage-gated sodium channel β2 subunit. Cortada E; Brugada R; Verges M J Biol Chem; 2024 Nov; 300(11):107833. PubMed ID: 39343005 [TBL] [Abstract][Full Text] [Related]
12. Structural Basis for Pore Blockade of the Human Cardiac Sodium Channel Na Li Z; Jin X; Wu T; Huang G; Wu K; Lei J; Pan X; Yan N Angew Chem Int Ed Engl; 2021 May; 60(20):11474-11480. PubMed ID: 33684260 [TBL] [Abstract][Full Text] [Related]
13. Ranolazine and its Antiarrhythmic Actions. Polytarchou K; Manolis AS Cardiovasc Hematol Agents Med Chem; 2015; 13(1):31-9. PubMed ID: 26245658 [TBL] [Abstract][Full Text] [Related]
14. Ranolazine: Electrophysiologic Effect, Efficacy, and Safety in Patients with Cardiac Arrhythmias. Shenasa M; Assadi H; Heidary S; Shenasa H Card Electrophysiol Clin; 2016 Jun; 8(2):467-79. PubMed ID: 27261835 [TBL] [Abstract][Full Text] [Related]
15. Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics. Poulin H; Bruhova I; Timour Q; Theriault O; Beaulieu JM; Frassati D; Chahine M Mol Pharmacol; 2014 Oct; 86(4):378-89. PubMed ID: 25028482 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Late Sodium Current as an Innovative Antiarrhythmic Strategy. Bengel P; Ahmad S; Sossalla S Curr Heart Fail Rep; 2017 Jun; 14(3):179-186. PubMed ID: 28455610 [TBL] [Abstract][Full Text] [Related]
17. 1,4-Disubstituted Piperazin-2-Ones as Selective Late Sodium Current Inhibitors with QT Interval Shortening Properties in Isolated Rabbit Hearts. Yang H; Jing M; Tian C; Li B; Liao W; Wang W; Li Y; Wang X; Duan G; Sun Q; Huang Z; Wu L J Med Chem; 2024 Aug; 67(15):12676-12694. PubMed ID: 38757601 [TBL] [Abstract][Full Text] [Related]
18. Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7. Thomas-Tran R; Du Bois J Proc Natl Acad Sci U S A; 2016 May; 113(21):5856-61. PubMed ID: 27162340 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine. Wang Y; Mi J; Lu K; Lu Y; Wang K PLoS One; 2015; 10(6):e0128653. PubMed ID: 26068619 [TBL] [Abstract][Full Text] [Related]
20. Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Yang T; Atack TC; Stroud DM; Zhang W; Hall L; Roden DM Circ Res; 2012 Jul; 111(3):322-32. PubMed ID: 22723299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]