These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39185697)
1. Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering. Joy K; David SS; Shanmugavadivu A; Selvamurugan N; Mani P J Biomater Sci Polym Ed; 2024 Dec; 35(18):2829-2844. PubMed ID: 39185697 [TBL] [Abstract][Full Text] [Related]
2. Alginate-gelatin based nanocomposite hydrogel scaffold incorporated with bioactive glass nanoparticles and fragmented nanofibers promote osteogenesis: From design to in vitro studies. Shahrebabaki KE; Labbaf S; Karimzadeh F; Goli M; Mirhaj M Int J Biol Macromol; 2024 Dec; 282(Pt 5):137104. PubMed ID: 39510461 [TBL] [Abstract][Full Text] [Related]
3. 3D chitosan scaffolds loaded with ZnO nanoparticles for bone tissue engineering. Tang W; Pan P; Chen T; Wang J; Cui X; Liu W; Kan L Colloids Surf B Biointerfaces; 2025 Jan; 245():114199. PubMed ID: 39232479 [TBL] [Abstract][Full Text] [Related]
4. The impact of 45S5 bioglass vs. β-TCP nanoparticles ratio on rheological behavior of formulated printing inks and 3D printed polycaprolactone-based scaffolds final properties. Kazemi M; Esmaeili H; Khandaei Dastjerdi M; Amiri F; Mehdikhani M; Rafienia M Heliyon; 2024 Nov; 10(22):e39219. PubMed ID: 39619586 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of 3D bioactive melt electrowriting composite scaffold with high osteogenic potential. Abdal-Hay A; Kocak-Oztug NA; Sheikh FA; Han P; Anwar S; Fournier BPJ; Ivanovski S Colloids Surf B Biointerfaces; 2025 Jan; 245():114270. PubMed ID: 39357390 [TBL] [Abstract][Full Text] [Related]
6. Application of electrospinning and 3D-printing based bilayer composite scaffold in the skull base reconstruction during transnasal surgery. Zhu Y; Liu X; Zhang K; El-Newehy M; Abdulhameed MM; Mo X; Cao L; Wang Y Colloids Surf B Biointerfaces; 2025 Jan; 245():114337. PubMed ID: 39489988 [TBL] [Abstract][Full Text] [Related]
7. Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration. Shaikh S; Mehrotra S; van Bochove B; Teotia AK; Singh P; Laurén I; Lindfors NC; Seppälä J; Kumar A ACS Appl Mater Interfaces; 2024 Nov; 16(47):65378-65393. PubMed ID: 39556416 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Shaltooki M; Dini G; Mehdikhani M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409 [TBL] [Abstract][Full Text] [Related]
9. Shape Memory Polymer Scaffolds-Utility for In Vitro Osteogenesis of Canine Multipotent Stromal Cells. Gasson SB; Dobson LK; Pfau-Cloud MR; Beltran FO; Gregory CA; Grunlan MA; Saunders WB J Biomed Mater Res B Appl Biomater; 2024 Dec; 112(12):e35503. PubMed ID: 39587932 [TBL] [Abstract][Full Text] [Related]
10. Structural and hemodynamic analysis of Weaire-Phelan scaffolds made of Ti-alloy as bone replacement component: A preclinical investigation. Bhardwaj JS; Chanda S PLoS One; 2024; 19(12):e0312880. PubMed ID: 39621658 [TBL] [Abstract][Full Text] [Related]
11. Calcium sources can increase mechanical properties of 3D printed bioactive hybrid bone scaffolds. Heyraud A; Tallia F; Chen S; Liu J; Chen J; Turner J; Jell G; Lee PD; Jones JR RSC Adv; 2024 Nov; 14(51):37846-37858. PubMed ID: 39606278 [TBL] [Abstract][Full Text] [Related]
12. Cell migration within porous electrospun nanofibrous scaffolds in a mouse subcuticular implantation model. Mohammad W; Chen L; Wu B; Dietz P; Bou-Akl T; Ren W; Markel DC J Orthop Res; 2025 Jan; 43(1):153-160. PubMed ID: 39342460 [TBL] [Abstract][Full Text] [Related]
13. Bioactive Three-Dimensional Chitosan-Based Scaffolds Modified with Poly(dopamine)/CBD@Pt/Au/PVP Nanoparticles as Potential NGCs Applicable in Nervous Tissue Regeneration-Preparation and Characterization. Sierakowska-Byczek A; Gałuszka A; Janus Ł; Radwan-Pragłowska J Molecules; 2024 Nov; 29(22):. PubMed ID: 39598764 [TBL] [Abstract][Full Text] [Related]
14. Study on mechanical properties of dual-channel cryogenic 3D printing scaffold for mandibular defect repair. Gao L; Sun M; Liu J; Meng L; Liu H; Li R Med Biol Eng Comput; 2024 Aug; 62(8):2435-2448. PubMed ID: 38622437 [TBL] [Abstract][Full Text] [Related]
15. A S S; G MK J Biomater Sci Polym Ed; 2024 Dec; 35(18):2845-2866. PubMed ID: 39431438 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic periosteum-bone scaffolds with codelivery of BMP-2 and PDGF-BB for skull repair. Zhan Z; Li R; Wu Y; Shen X; Fu D; Han H; Jing P; Li B; Han F; Meng B Bone; 2025 Jan; 190():117315. PubMed ID: 39505079 [TBL] [Abstract][Full Text] [Related]
17. Synchronized long-term delivery of growth hormone and insulin-like growth factor 1 through poly (lactic-co-glycolic acid) nanoparticles on polycaprolactone scaffolds for enhanced osteochondral regeneration. Li D; Zheng S; Wei P; Xu Y; Hu W; Ma S; Tang C; Wang L Int J Biol Macromol; 2024 Dec; 282(Pt 4):136781. PubMed ID: 39454927 [TBL] [Abstract][Full Text] [Related]
18. Osteogenic citric acid linked chitosan coating of 3D-printed PLA scaffolds for preventing implant-associated infections. Negi A; Verma A; Garg M; Goswami K; Mishra V; Singh AK; Agrawal G; Murab S Int J Biol Macromol; 2024 Dec; 282(Pt 3):136968. PubMed ID: 39490474 [TBL] [Abstract][Full Text] [Related]
19. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. Zhou G; Xu R; Groth T; Wang Y; Yuan X; Ye H; Dou X Tissue Eng Part B Rev; 2024 Dec; 30(6):607-630. PubMed ID: 38481114 [TBL] [Abstract][Full Text] [Related]
20. Mechanically enhanced biodegradable scaffold based on SF microfibers for repairing bone defects in the distal femur of rats. Wei S; Hu Q; Dong J; Sun Y; Bai J; Shan H; Gao X; Sheng L; Dai J; Jiang F; Dai X; Gu X; Zhou X Int J Biol Macromol; 2024 Dec; 282(Pt 5):137372. PubMed ID: 39521213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]