BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 3918571)

  • 1. Characterization of an arachidonic acid-selective acyl-CoA synthetase from murine T lymphocytes.
    Taylor AS; Sprecher H; Russell JH
    Biochim Biophys Acta; 1985 Feb; 833(2):229-38. PubMed ID: 3918571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arachidonoyl-coenzyme A synthetase and nonspecific acyl-coenzyme A synthetase activities in purified rat brain microvessels.
    Morand O; Carré JB; Homayoun P; Niel E; Baumann N; Bourre JM
    J Neurochem; 1987 Apr; 48(4):1150-6. PubMed ID: 3102692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate.
    Reddy TS; Sprecher H; Bazan NG
    Eur J Biochem; 1984 Nov; 145(1):21-9. PubMed ID: 6237910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic properties of arachidonoyl-coenzyme A synthetase in rat brain microsomes.
    Reddy TS; Bazan NG
    Arch Biochem Biophys; 1983 Oct; 226(1):125-33. PubMed ID: 6639046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of eicosanoid synthesis in microvessel endothelium: glucocorticoids do not affect arachidonyl CoA synthetase activity.
    Gerritsen ME; Perry CA
    Biochim Biophys Acta; 1990 Jul; 1045(2):174-9. PubMed ID: 2378909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and metabolism of arachidonyl- and eicosapentaenoyl-CoA in rat aorta.
    Morisaki N; Saito Y; Kumagai A
    Biochim Biophys Acta; 1983 Jul; 752(2):301-6. PubMed ID: 6305425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a single non-arachidonic acid-specific fatty acyl-CoA synthetase in heart which is regulated by Mg2+.
    Saunders C; Voigt JM; Weis MT
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):849-53. PubMed ID: 8611165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of an arachidonoyl coenzyme A synthetase in human platelets.
    Wilson DB; Prescott SM; Majerus PW
    J Biol Chem; 1982 Apr; 257(7):3510-5. PubMed ID: 7061494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of 5,8,11,14-eicosatetraynoic acid (ETYA) into cell lipids: competition with arachidonic acid for esterification.
    Taylor AS; Morrison AR; Russell JH
    Prostaglandins; 1985 Mar; 29(3):449-58. PubMed ID: 3923563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?
    Bakken AM; Farstad M; Holmsen H
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):145-52. PubMed ID: 1848073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High affinity esterification of eicosanoid precursor fatty acids by platelets.
    Neufeld EJ; Wilson DB; Sprecher H; Majerus PW
    J Clin Invest; 1983 Jul; 72(1):214-20. PubMed ID: 6308046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid specificity of acyl-CoA synthetase in rat glomeruli.
    Morisaki N; Kanzaki T; Saito Y; Yoshida S
    Biochim Biophys Acta; 1986 Feb; 875(2):311-5. PubMed ID: 3942768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous long chain acyl-CoA synthetases control distribution of individual fatty acids in newly-formed glycerolipids of neuronal cells undergoing neurite outgrowth.
    Li J; Wurtman RJ
    Neurochem Res; 1999 Jun; 24(6):739-50. PubMed ID: 10447457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-chain acyl-coenzyme A synthetase in rat brain myelin.
    Vaswani KK; Ledeen RW
    J Neurosci Res; 1987; 17(1):65-70. PubMed ID: 3106645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence and properties of acyl coenzyme A synthetase for medium-chain fatty acids in rat intestinal mucosa.
    Ohkubo Y; Mori S; Ishikawa Y; Shirai K; Saito Y; Yoshida S
    Digestion; 1992; 51(1):42-50. PubMed ID: 1386328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid structural requirements for activity of arachidonoyl-CoA synthetase.
    Neufeld EJ; Sprecher H; Evans RW; Majerus PW
    J Lipid Res; 1984 Mar; 25(3):288-93. PubMed ID: 6726081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triacsin C: a differential inhibitor of arachidonoyl-CoA synthetase and nonspecific long chain acyl-CoA synthetase.
    Hartman EJ; Omura S; Laposata M
    Prostaglandins; 1989 Jun; 37(6):655-71. PubMed ID: 2505330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specificity of fatty-acyl-CoA ligase in liver microsomes.
    Noy N; Zakim D
    Biochim Biophys Acta; 1985 Feb; 833(2):239-44. PubMed ID: 3970953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl-CoA synthetase activity in Plasmodium knowlesi-infected erythrocytes displays peculiar substrate specificities.
    Beaumelle BD; Vial HJ
    Biochim Biophys Acta; 1988 Jan; 958(1):1-9. PubMed ID: 3334857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenobiotic acyl-CoA formation: evidence of kinetically distinct hepatic microsomal long-chain fatty acid and nafenopin-CoA ligases.
    Knights KM; Roberts BJ
    Chem Biol Interact; 1994 Mar; 90(3):215-23. PubMed ID: 8168170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.