These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 39186807)

  • 1. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification.
    Shi P; Han J; Zhang Y; Li G; Zhou X
    PLoS Comput Biol; 2024 Aug; 20(8):e1012389. PubMed ID: 39186807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment.
    Wang M; Yan X; Dong Y; Li X; Gao B
    PLoS Comput Biol; 2024 May; 20(5):e1012113. PubMed ID: 38728362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing cancer driver gene identification through an integrative network and pathway approach.
    Song J; Song Z; Gong Y; Ge L; Lou W
    J Biomed Inform; 2024 Oct; 158():104729. PubMed ID: 39306314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Cancer Driver Modules Based on Graph Clustering from Multiomics Data.
    Zhang W; Wang SL; Liu Y
    J Comput Biol; 2021 Oct; 28(10):1007-1020. PubMed ID: 34529511
    [No Abstract]   [Full Text] [Related]  

  • 8. Integration of multiple networks and pathways identifies cancer driver genes in pan-cancer analysis.
    Cava C; Bertoli G; Colaprico A; Olsen C; Bontempi G; Castiglioni I
    BMC Genomics; 2018 Jan; 19(1):25. PubMed ID: 29304754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iOmicsPASS: network-based integration of multiomics data for predictive subnetwork discovery.
    Koh HWL; Fermin D; Vogel C; Choi KP; Ewing RM; Choi H
    NPJ Syst Biol Appl; 2019; 5():22. PubMed ID: 31312515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying cooperating cancer driver genes in individual patients through hypergraph random walk.
    Zhang T; Zhang SW; Xie MY; Li Y
    J Biomed Inform; 2024 Sep; 157():104710. PubMed ID: 39159864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data.
    Nguyen QH; Le DH
    Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks.
    Song H; Yin C; Li Z; Feng K; Cao Y; Gu Y; Sun H
    Metabolites; 2023 Feb; 13(3):. PubMed ID: 36984779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.