These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 39188699)

  • 1. Iron-doped nanozymes with spontaneous peroxidase-mimic activity as a promising antibacterial therapy for bacterial keratitis.
    Geng X; Zhang N; Li Z; Zhao M; Zhang H; Li J
    Smart Med; 2024 Jun; 3(2):e20240004. PubMed ID: 39188699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mo@ZIF-8 nanozyme preparation and its antibacterial property evaluation.
    Lian Z; Lu C; Zhu J; Zhang X; Wu T; Xiong Y; Sun Z; Yang R
    Front Chem; 2022; 10():1093073. PubMed ID: 36505748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing.
    Liu Y; Xu B; Lu M; Li S; Guo J; Chen F; Xiong X; Yin Z; Liu H; Zhou D
    Bioact Mater; 2022 Jun; 12():246-256. PubMed ID: 35310377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-Single-Atom Nanozyme with NIR Enhanced Catalytic Activities for Facilitating MRSA-Infected Wound Therapy.
    Liu Q; Liu X; He X; Wang D; Zheng C; Jin L; Shen J
    Adv Sci (Weinh); 2024 Apr; 11(15):e2308684. PubMed ID: 38332653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tannin coordinated nanozyme composite-based hybrid hydrogel eye drops for prophylactic treatment of multidrug-resistant Pseudomonas aeruginosa keratitis.
    Wang H; Song F; Feng J; Qi X; Ma L; Xie L; Shi W; Zhou Q
    J Nanobiotechnology; 2022 Oct; 20(1):445. PubMed ID: 36242070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron/Molybdenum Sulfide Nanozyme Cocatalytic Fenton Reaction for Photothermal/Chemodynamic Efficient Wound Healing.
    Song H; Cheng Z; Qin R; Chen Z; Wang T; Wang Y; Jiang H; Du Y; Wu F
    Langmuir; 2024 Jul; 40(28):14346-14354. PubMed ID: 38953474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy.
    Shen Y; Nie C; Pan T; Zhang W; Yang H; Ye Y; Wang X
    Acta Biomater; 2023 Sep; 168():580-592. PubMed ID: 37451659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe-Doped MoS
    Ali SR; De M
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42940-42949. PubMed ID: 36122369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DHTPY-Cu@ZOL-Enhanced Photodynamic Therapy: A Strategic Platform for Advanced Treatment of Drug-Resistant Bacterial Wound Infections.
    Hou B; Li B; Deng W; Li B; Ren B; Hu C; Zhang G; Yang F; Xiao M; Xie S; Xie D
    Int J Nanomedicine; 2024; 19():6319-6336. PubMed ID: 38919773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food-borne melanoidin-based nanozyme mimics natural peroxidase for efficient catalytic disinfection.
    Sun H; Lan X; Wang T; He Y; Dan J; Kang Y; Liang Y; Zhang Q; Wang J; Zhang W
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112948. PubMed ID: 36274397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective Antibacterial Activity of Degradable Copper-Doped Phosphate-Based Glass Nanozymes.
    Liu Y; Nie N; Tang H; Zhang C; Chen K; Wang W; Liu J
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11631-11645. PubMed ID: 33685118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensionality reduction boosts the peroxidase-like activity of bimetallic MOFs for enhanced multidrug-resistant bacteria eradication.
    Sun H; Dan J; Liang Y; Li M; Zhuo J; Kang Y; Su Z; Zhang Q; Wang J; Zhang W
    Nanoscale; 2022 Aug; 14(32):11693-11702. PubMed ID: 35912946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated Enzyme Activity and Efficient Antibacterial Activity of Copper-Doped Single-Atom Nanozymes.
    Zhu J; Li Q; Li X; Wu X; Yuan T; Yang Y
    Langmuir; 2022 Jun; 38(22):6860-6870. PubMed ID: 35617453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridized nanozymes for anti-osteosarcoma therapy via the Fenton reaction.
    Zheng J; Huang L; Wang J; Zhuo S; Huang G
    iScience; 2024 Apr; 27(4):109474. PubMed ID: 38551000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid exfoliation of V
    Ma Y; Jiang K; Chen H; Shi Q; Liu H; Zhong X; Qian H; Chen X; Cheng L; Wang X
    Acta Biomater; 2022 Sep; 149():359-372. PubMed ID: 35779771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Will the Bacteria Survive in the CeO
    Zhu W; Wang L; Li Q; Jiao L; Yu X; Gao X; Qiu H; Zhang Z; Bing W
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34205408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action.
    Gao F; Shao T; Yu Y; Xiong Y; Yang L
    Nat Commun; 2021 Feb; 12(1):745. PubMed ID: 33531505
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhang H; Liu S; Yue J; Sun S; Lv Q; Jian S; Xie Y; Han L; Zhang F; Dai Y; Wang L
    Antimicrob Agents Chemother; 2019 Apr; 63(4):. PubMed ID: 30718254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a photothermal hydrogel platform with two-dimensional PEG@zirconium-ferrocene MOF nanozymes for rapid tissue repair of bacteria-infected wounds.
    Wang X; Sun X; Bu T; Wang Q; Zhang H; Jia P; Li L; Wang L
    Acta Biomater; 2021 Nov; 135():342-355. PubMed ID: 34450338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Encapsulation of
    Ahanger AM; Kumar S; Arya A; Suryavanshi A; Kain D; Vandana
    ACS Omega; 2022 Jan; 7(2):1671-1681. PubMed ID: 35071862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.