These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 39189778)
1. Role of glycogen metabolism in Hasan MK; Pizzarro-Guajardo M; Sanchez J; Govind R mSphere; 2024 Sep; 9(9):e0031024. PubMed ID: 39189778 [TBL] [Abstract][Full Text] [Related]
10. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. Edwards AN; Krall EG; McBride SM J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010 [TBL] [Abstract][Full Text] [Related]
11. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354 [TBL] [Abstract][Full Text] [Related]
12. The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile. Hong HA; Ferreira WT; Hosseini S; Anwar S; Hitri K; Wilkinson AJ; Vahjen W; Zentek J; Soloviev M; Cutting SM J Infect Dis; 2017 Dec; 216(11):1452-1459. PubMed ID: 28968845 [TBL] [Abstract][Full Text] [Related]
13. The Clostridium difficile spo0A gene is a persistence and transmission factor. Deakin LJ; Clare S; Fagan RP; Dawson LF; Pickard DJ; West MR; Wren BW; Fairweather NF; Dougan G; Lawley TD Infect Immun; 2012 Aug; 80(8):2704-11. PubMed ID: 22615253 [TBL] [Abstract][Full Text] [Related]
14. The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection. Barketi-Klai A; Monot M; Hoys S; Lambert-Bordes S; Kuehne SA; Minton N; Collignon A; Dupuy B; Kansau I PLoS One; 2014; 9(5):e96876. PubMed ID: 24841151 [TBL] [Abstract][Full Text] [Related]
15. Cyclic diguanylate differentially regulates the expression of virulence factors and pathogenesis-related phenotypes in Clostridioides difficile. Ouyang Z; Zhao M; Li J; Zhang Y; Zhao J Microbiol Res; 2024 Sep; 286():127811. PubMed ID: 38909416 [TBL] [Abstract][Full Text] [Related]
16. Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection. Wang S; Heuler J; Wickramage I; Sun X Microbiol Spectr; 2022 Apr; 10(2):e0178821. PubMed ID: 35315695 [TBL] [Abstract][Full Text] [Related]
17. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models. Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477 [TBL] [Abstract][Full Text] [Related]
18. New ribotype Gu W; Wang W; Li W; Li N; Wang Y; Zhang W; Lu C; Tong P; Han Y; Sun X; Lu J; Wu Y; Dai J Emerg Microbes Infect; 2021 Dec; 10(1):687-699. PubMed ID: 33682630 [No Abstract] [Full Text] [Related]
19. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. Kuehne SA; Collery MM; Kelly ML; Cartman ST; Cockayne A; Minton NP J Infect Dis; 2014 Jan; 209(1):83-6. PubMed ID: 23935202 [TBL] [Abstract][Full Text] [Related]
20. Identification of a Novel Regulator of Clostridioides difficile Cortex Formation. Touchette MH; Benito de la Puebla H; Alves Feliciano C; Tanenbaum B; Schenone M; Carr SA; Shen A mSphere; 2021 Jun; 6(3):e0021121. PubMed ID: 34047655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]