These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 39189955)
1. TWAS-GKF: a novel method for causal gene identification in transcriptome-wide association studies with knockoff inference. Wang A; Tian P; Zhang YD Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39189955 [TBL] [Abstract][Full Text] [Related]
2. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
3. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
4. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
5. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies. He R; Liu M; Lin Z; Zhuang Z; Shen X; Pan W Biostatistics; 2024 Apr; 25(2):468-485. PubMed ID: 36610078 [TBL] [Abstract][Full Text] [Related]
6. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
7. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
8. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
9. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
11. Meta-Analysis of Transcriptome-Wide Association Studies across 13 Brain Tissues Identified Novel Clusters of Genes Associated with Nicotine Addiction. Ye Z; Mo C; Ke H; Yan Q; Chen C; Kochunov P; Hong LE; Mitchell BD; Chen S; Ma T Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052378 [TBL] [Abstract][Full Text] [Related]
12. Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data. Liu AE; Kang HM PLoS Genet; 2022 Jan; 18(1):e1009571. PubMed ID: 35100255 [TBL] [Abstract][Full Text] [Related]
13. Integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes and pathways associated with aortic aneurysm and dissection. Zhang Y; Li L; Ma L Gene; 2022 Jan; 808():145993. PubMed ID: 34626721 [TBL] [Abstract][Full Text] [Related]
14. TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies. Lu M; Zhang Y; Yang F; Mai J; Gao Q; Xu X; Kang H; Hou L; Shang Y; Qain Q; Liu J; Jiang M; Zhang H; Bu C; Wang J; Zhang Z; Zhang Z; Zeng J; Li J; Xiao J Nucleic Acids Res; 2023 Jan; 51(D1):D1179-D1187. PubMed ID: 36243959 [TBL] [Abstract][Full Text] [Related]
15. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Wu C; Pan W Genet Epidemiol; 2018 Apr; 42(3):303-316. PubMed ID: 29411426 [TBL] [Abstract][Full Text] [Related]
16. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
17. TWAS revealed significant causal loci for milk production and its composition in Murrah buffaloes. Chhotaray S; Vohra V; Uttam V; Santhosh A; Saxena P; Gahlyan RK; Gowane G Sci Rep; 2023 Dec; 13(1):22401. PubMed ID: 38104199 [TBL] [Abstract][Full Text] [Related]
18. twas_sim, a Python-based tool for simulation and power analysis of transcriptome-wide association analysis. Wang X; Lu Z; Bhattacharya A; Pasaniuc B; Mancuso N Bioinformatics; 2023 May; 39(5):. PubMed ID: 37099718 [TBL] [Abstract][Full Text] [Related]
19. A large-scale transcriptome-wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine-mapping. Tapia AL; Rowland BT; Rosen JD; Preuss M; Young K; Graff M; Choquet H; Couper DJ; Buyske S; Bien SA; Jorgenson E; Kooperberg C; Loos RJF; Morrison AC; North KE; Yu B; Reiner AP; Li Y; Raffield LM Genet Epidemiol; 2022 Feb; 46(1):3-16. PubMed ID: 34779012 [TBL] [Abstract][Full Text] [Related]
20. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Gao G; Fiorica PN; McClellan J; Barbeira AN; Li JL; Olopade OI; Im HK; Huo D Am J Hum Genet; 2023 Jun; 110(6):950-962. PubMed ID: 37164006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]