These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 3919002)
1. Asparagine-linked oligosaccharides on formyl peptide chemotactic receptors of human phagocytic cells. Malech HL; Gardner JP; Heiman DF; Rosenzweig SA J Biol Chem; 1985 Feb; 260(4):2509-14. PubMed ID: 3919002 [TBL] [Abstract][Full Text] [Related]
2. Rat and human neutrophil N-formyl-peptide chemotactic receptors. Species difference in the glycosylation of similar 35-38 kDa polypeptide cores. Remes JJ; Petäjä-Repo UE; Rajaniemi HJ Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):67-72. PubMed ID: 1854349 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate. Gardner JP; Melnick DA; Malech HL J Immunol; 1986 Feb; 136(4):1400-5. PubMed ID: 3511145 [TBL] [Abstract][Full Text] [Related]
4. Effects of tunicamycin on the expression and function of formyl peptide chemotactic receptors of differentiated HL-60 cells. Heiman DF; Gardner JP; Apfeldorf WJ; Malech HL J Immunol; 1986 Jun; 136(12):4623-30. PubMed ID: 3011898 [TBL] [Abstract][Full Text] [Related]
5. Formyl peptide chemotactic receptor. Evidence for an active proteolytic fragment. Dolmatch B; Niedel J J Biol Chem; 1983 Jun; 258(12):7570-7. PubMed ID: 6305946 [TBL] [Abstract][Full Text] [Related]
6. Asparagine-linked glycosylation of cytochrome b558 large subunit varies in different human phagocytic cells. Kleinberg ME; Rotrosen D; Malech HL J Immunol; 1989 Dec; 143(12):4152-7. PubMed ID: 2556477 [TBL] [Abstract][Full Text] [Related]
7. Covalent affinity labeling of the formyl peptide chemotactic receptor. Niedel J; Davis J; Cuatrecasas P J Biol Chem; 1980 Aug; 255(15):7063-6. PubMed ID: 7391068 [TBL] [Abstract][Full Text] [Related]
8. Swainsonine induced modification of N-linked oligosaccharides on human phagocytic cell formyl peptide chemotactic receptors. Heiman DF; Malech HL Biomed Pharmacother; 1987; 41(6):278-84. PubMed ID: 2833322 [TBL] [Abstract][Full Text] [Related]
9. Detergent solubilization of the formyl peptide chemotactic receptor. Strategy based on covalent affinity labeling. Niedel J J Biol Chem; 1981 Sep; 256(17):9295-9. PubMed ID: 6267069 [TBL] [Abstract][Full Text] [Related]
10. Covalent affinity labeling, detergent solubilization, and fluid-phase characterization of the rabbit neutrophil formyl peptide chemotaxis receptor. Marasco WA; Becker KM; Feltner DE; Brown CS; Ward PA; Nairn R Biochemistry; 1985 Apr; 24(9):2227-36. PubMed ID: 3995012 [TBL] [Abstract][Full Text] [Related]
11. Internalization of N-formyl peptide chemotactic receptor-ligand complex by human neutrophils. The role of the receptor's 2-kDa external domain and carbohydrates. Remes J; Petäjä-Repo U; Rajaniemi H J Recept Res; 1994 Jan; 14(1):47-62. PubMed ID: 8158582 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of the insulin-like growth factor-II (IGF-II)/mannose-6-phosphate receptor in rat C6 glial cells: the role of N-linked glycosylation in binding of IGF-II to the receptor. Kiess W; Greenstein LA; Lee L; Thomas C; Nissley SP Mol Endocrinol; 1991 Feb; 5(2):281-91. PubMed ID: 1645456 [TBL] [Abstract][Full Text] [Related]
13. Significance of the extracellular domain and the carbohydrates of the human neutrophil N-formyl peptide chemotactic receptor for the signal transduction by the receptor. Remes JJ; Petäjä-Repo UE; Tuukkanen KJ; Rajaniemi HJ Exp Cell Res; 1993 Nov; 209(1):26-32. PubMed ID: 8224002 [TBL] [Abstract][Full Text] [Related]
14. A subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor. Niedel J; Kahane I; Lachman L; Cuatrecasas P Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1000-4. PubMed ID: 6928654 [TBL] [Abstract][Full Text] [Related]
15. Processing of the formyl peptide receptor by HL-60 cells. Anderson R; Niedel J J Biol Chem; 1984 Nov; 259(21):13309-15. PubMed ID: 6593320 [TBL] [Abstract][Full Text] [Related]
16. Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosylation of insulin receptors in adipocytes and brain. Heidenreich KA; Brandenburg D Endocrinology; 1986 May; 118(5):1835-42. PubMed ID: 3084208 [TBL] [Abstract][Full Text] [Related]
17. Post-translational processing and activation of insulin and EGF proreceptors. Lane MD; Ronnett G; Slieker LJ; Kohanski RA; Olson TL Biochimie; 1985; 67(10-11):1069-80. PubMed ID: 3000457 [TBL] [Abstract][Full Text] [Related]
18. Glycosylation of the human interferon-gamma receptor. N-linked carbohydrates contribute to structural heterogeneity and are required for ligand binding. Fischer T; Thoma B; Scheurich P; Pfizenmaier K J Biol Chem; 1990 Jan; 265(3):1710-7. PubMed ID: 2136857 [TBL] [Abstract][Full Text] [Related]
19. N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist. Johansson B; Wymann MP; Holmgren-Peterson K; Magnusson KE J Cell Biol; 1993 Jun; 121(6):1281-9. PubMed ID: 8509449 [TBL] [Abstract][Full Text] [Related]
20. Covalent cross-linking of radiolabeled N-formylated hexapeptide to its specific receptor on rat and human neutrophils: evidence for a ligand induced complex formation. Remes J; Keinänen K; Petäjä-Repo U; Rajaniemi H J Recept Res; 1992; 12(4):507-27. PubMed ID: 1460606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]