BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3919002)

  • 1. Asparagine-linked oligosaccharides on formyl peptide chemotactic receptors of human phagocytic cells.
    Malech HL; Gardner JP; Heiman DF; Rosenzweig SA
    J Biol Chem; 1985 Feb; 260(4):2509-14. PubMed ID: 3919002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat and human neutrophil N-formyl-peptide chemotactic receptors. Species difference in the glycosylation of similar 35-38 kDa polypeptide cores.
    Remes JJ; Petäjä-Repo UE; Rajaniemi HJ
    Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):67-72. PubMed ID: 1854349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the formyl peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate.
    Gardner JP; Melnick DA; Malech HL
    J Immunol; 1986 Feb; 136(4):1400-5. PubMed ID: 3511145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tunicamycin on the expression and function of formyl peptide chemotactic receptors of differentiated HL-60 cells.
    Heiman DF; Gardner JP; Apfeldorf WJ; Malech HL
    J Immunol; 1986 Jun; 136(12):4623-30. PubMed ID: 3011898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formyl peptide chemotactic receptor. Evidence for an active proteolytic fragment.
    Dolmatch B; Niedel J
    J Biol Chem; 1983 Jun; 258(12):7570-7. PubMed ID: 6305946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asparagine-linked glycosylation of cytochrome b558 large subunit varies in different human phagocytic cells.
    Kleinberg ME; Rotrosen D; Malech HL
    J Immunol; 1989 Dec; 143(12):4152-7. PubMed ID: 2556477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent affinity labeling of the formyl peptide chemotactic receptor.
    Niedel J; Davis J; Cuatrecasas P
    J Biol Chem; 1980 Aug; 255(15):7063-6. PubMed ID: 7391068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swainsonine induced modification of N-linked oligosaccharides on human phagocytic cell formyl peptide chemotactic receptors.
    Heiman DF; Malech HL
    Biomed Pharmacother; 1987; 41(6):278-84. PubMed ID: 2833322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detergent solubilization of the formyl peptide chemotactic receptor. Strategy based on covalent affinity labeling.
    Niedel J
    J Biol Chem; 1981 Sep; 256(17):9295-9. PubMed ID: 6267069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent affinity labeling, detergent solubilization, and fluid-phase characterization of the rabbit neutrophil formyl peptide chemotaxis receptor.
    Marasco WA; Becker KM; Feltner DE; Brown CS; Ward PA; Nairn R
    Biochemistry; 1985 Apr; 24(9):2227-36. PubMed ID: 3995012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internalization of N-formyl peptide chemotactic receptor-ligand complex by human neutrophils. The role of the receptor's 2-kDa external domain and carbohydrates.
    Remes J; Petäjä-Repo U; Rajaniemi H
    J Recept Res; 1994 Jan; 14(1):47-62. PubMed ID: 8158582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of the insulin-like growth factor-II (IGF-II)/mannose-6-phosphate receptor in rat C6 glial cells: the role of N-linked glycosylation in binding of IGF-II to the receptor.
    Kiess W; Greenstein LA; Lee L; Thomas C; Nissley SP
    Mol Endocrinol; 1991 Feb; 5(2):281-91. PubMed ID: 1645456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of the extracellular domain and the carbohydrates of the human neutrophil N-formyl peptide chemotactic receptor for the signal transduction by the receptor.
    Remes JJ; Petäjä-Repo UE; Tuukkanen KJ; Rajaniemi HJ
    Exp Cell Res; 1993 Nov; 209(1):26-32. PubMed ID: 8224002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor.
    Niedel J; Kahane I; Lachman L; Cuatrecasas P
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):1000-4. PubMed ID: 6928654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of the formyl peptide receptor by HL-60 cells.
    Anderson R; Niedel J
    J Biol Chem; 1984 Nov; 259(21):13309-15. PubMed ID: 6593320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligosaccharide heterogeneity of insulin receptors. Comparison of N-linked glycosylation of insulin receptors in adipocytes and brain.
    Heidenreich KA; Brandenburg D
    Endocrinology; 1986 May; 118(5):1835-42. PubMed ID: 3084208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational processing and activation of insulin and EGF proreceptors.
    Lane MD; Ronnett G; Slieker LJ; Kohanski RA; Olson TL
    Biochimie; 1985; 67(10-11):1069-80. PubMed ID: 3000457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation of the human interferon-gamma receptor. N-linked carbohydrates contribute to structural heterogeneity and are required for ligand binding.
    Fischer T; Thoma B; Scheurich P; Pfizenmaier K
    J Biol Chem; 1990 Jan; 265(3):1710-7. PubMed ID: 2136857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-formyl peptide receptors in human neutrophils display distinct membrane distribution and lateral mobility when labeled with agonist and antagonist.
    Johansson B; Wymann MP; Holmgren-Peterson K; Magnusson KE
    J Cell Biol; 1993 Jun; 121(6):1281-9. PubMed ID: 8509449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent cross-linking of radiolabeled N-formylated hexapeptide to its specific receptor on rat and human neutrophils: evidence for a ligand induced complex formation.
    Remes J; Keinänen K; Petäjä-Repo U; Rajaniemi H
    J Recept Res; 1992; 12(4):507-27. PubMed ID: 1460606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.