These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3919011)
1. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation? Vadgama JV; Christensen HN J Biol Chem; 1985 Mar; 260(5):2912-21. PubMed ID: 3919011 [TBL] [Abstract][Full Text] [Related]
2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC. Fincham DA; Mason DK; Young JD Biochim Biophys Acta; 1988 Jan; 937(1):184-94. PubMed ID: 3334844 [TBL] [Abstract][Full Text] [Related]
3. Characterization of amino acid transport during erythroid cell differentiation. Vadgama JV; Castro M; Christensen HN J Biol Chem; 1987 Sep; 262(27):13273-84. PubMed ID: 3654612 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii). Fincham DA; Ellory JC; Young JD Can J Physiol Pharmacol; 1992 Aug; 70(8):1117-27. PubMed ID: 1473044 [TBL] [Abstract][Full Text] [Related]
5. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell. Rosenberg R Acta Physiol Scand; 1982 Dec; 116(4):321-30. PubMed ID: 7170995 [TBL] [Abstract][Full Text] [Related]
6. Red-cell amino acid transport. Evidence for the presence of system ASC in mature human red blood cells. Young JD; Wolowyk MW; Jones SM; Ellory JC Biochem J; 1983 Nov; 216(2):349-57. PubMed ID: 6661202 [TBL] [Abstract][Full Text] [Related]
7. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes. Young JD; Mason DK; Fincham DA J Biol Chem; 1988 Jan; 263(1):140-3. PubMed ID: 3121605 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Van Winkle LJ; Campione AL; Gorman JM Biochim Biophys Acta; 1990 Jun; 1025(2):215-24. PubMed ID: 2114171 [TBL] [Abstract][Full Text] [Related]
9. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. Devés R; Angelo S; Chávez P J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan transport through transport system T in the human erythrocyte, the Ehrlich cell and the rat intestine. López-Burillo S; García-Sancho J; Herreros B Biochim Biophys Acta; 1985 Oct; 820(1):85-94. PubMed ID: 4052418 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Na(+)-independent glutamine transport in rat liver. Pacitti AJ; Inoue Y; Souba WW Am J Physiol; 1993 Jul; 265(1 Pt 1):G90-8. PubMed ID: 8338176 [TBL] [Abstract][Full Text] [Related]
12. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti). Young JD; Fincham DA; Harvey CM Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517 [TBL] [Abstract][Full Text] [Related]
13. Acidic amino acid transport in animal cells and tissues. Lerner J Comp Biochem Physiol B; 1987; 87(3):443-57. PubMed ID: 3304825 [TBL] [Abstract][Full Text] [Related]
14. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes. Duhm J; Becker BF J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898 [TBL] [Abstract][Full Text] [Related]
15. A new Na+-independent transport system for dipolar amino acids apparently corresponding to systems persisting after erythrocyte maturation in some mammalian genotypes. Vadgama JV; Christensen HN Ann N Y Acad Sci; 1985; 456():454-6. PubMed ID: 3937471 [No Abstract] [Full Text] [Related]
16. Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. Utsunomiya-Tate N; Endou H; Kanai Y J Biol Chem; 1996 Jun; 271(25):14883-90. PubMed ID: 8662767 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a close link between the thyroid hormone transport system and the aromatic amino acid transport system T in erythrocytes. Zhou Y; Samson M; Osty J; Francon J; Blondeau JP J Biol Chem; 1990 Oct; 265(28):17000-4. PubMed ID: 2211606 [TBL] [Abstract][Full Text] [Related]
18. Amino acid transport in human and in sheep erythrocytes. Young JD; Jones SE; Ellory JC Proc R Soc Lond B Biol Sci; 1980 Sep; 209(1176):355-75. PubMed ID: 6109287 [TBL] [Abstract][Full Text] [Related]
19. Transport of neutral amino acids by human erythrocytes. Al-Saleh EA; Wheeler KP Biochim Biophys Acta; 1982 Jan; 684(2):157-71. PubMed ID: 7055559 [TBL] [Abstract][Full Text] [Related]
20. Characterization of threonine transport into a kidney epithelial cell line (BSC-1). Evidence for the presence of Na(+)-independent system asc [corrected]. Kuhlmann MK; Vadgama JV J Biol Chem; 1991 Aug; 266(23):15042-7. PubMed ID: 1907970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]