These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39190181)
1. Systematic metabolic engineering for improved synthesis of perillic acid in Candida tropicalis. Yang H; Guo J; Zhang L; Shen W; Xia Y; Chen X Appl Microbiol Biotechnol; 2024 Aug; 108(1):447. PubMed ID: 39190181 [TBL] [Abstract][Full Text] [Related]
2. [Production of limonene and its derivative in Huang Y; Yang H; Shen W; Xia Y; Cao Y; Chen X Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4647-4662. PubMed ID: 38013190 [TBL] [Abstract][Full Text] [Related]
3. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica. Ferrara MA; Almeida DS; Siani AC; Lucchetti L; Lacerda PS; Freitas A; Tappin MR; Bon EP Braz J Microbiol; 2013 Dec; 44(4):1075-80. PubMed ID: 24688495 [TBL] [Abstract][Full Text] [Related]
4. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow. Willrodt C; Halan B; Karthaus L; Rehdorf J; Julsing MK; Buehler K; Schmid A Biotechnol Bioeng; 2017 Feb; 114(2):281-290. PubMed ID: 27530691 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803. Lin PC; Saha R; Zhang F; Pakrasi HB Sci Rep; 2017 Dec; 7(1):17503. PubMed ID: 29235513 [TBL] [Abstract][Full Text] [Related]
6. Metabolic Engineering of the Native Monoterpene Pathway in Spearmint for Production of Heterologous Monoterpenes Reveals Complex Metabolism and Pathway Interactions. Li C; Sarangapani S; Wang Q; Nadimuthu K; Sarojam R Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32859057 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Engineering of Xu J; Xia Y; Shi Y; Zhu M; Zhang H; Gui X; Shen W; Yang H; Chen X ACS Synth Biol; 2024 Aug; 13(8):2533-2544. PubMed ID: 39090815 [TBL] [Abstract][Full Text] [Related]
8. Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids. Wang J; Peng J; Fan H; Xiu X; Xue L; Wang L; Su J; Yang X; Wang R J Ind Microbiol Biotechnol; 2018 Nov; 45(11):971-981. PubMed ID: 30187242 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Alonso-Gutierrez J; Chan R; Batth TS; Adams PD; Keasling JD; Petzold CJ; Lee TS Metab Eng; 2013 Sep; 19():33-41. PubMed ID: 23727191 [TBL] [Abstract][Full Text] [Related]
10. Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor. Mars AE; Gorissen JP; van den Beld I; Eggink G Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):101-7. PubMed ID: 11499915 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of protein prenylation by metabolites of limonene. Hardcastle IR; Rowlands MG; Barber AM; Grimshaw RM; Mohan MK; Nutley BP; Jarman M Biochem Pharmacol; 1999 Apr; 57(7):801-9. PubMed ID: 10075086 [TBL] [Abstract][Full Text] [Related]
12. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Mahmoud SS; Williams M; Croteau R Phytochemistry; 2004 Mar; 65(5):547-54. PubMed ID: 15003417 [TBL] [Abstract][Full Text] [Related]
13. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation. Hu Z; Lin L; Li H; Li P; Weng Y; Zhang C; Yu A; Xiao D J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):511-523. PubMed ID: 32495196 [TBL] [Abstract][Full Text] [Related]
14. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092 [TBL] [Abstract][Full Text] [Related]
15. Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Muñoz-Bertomeu J; Ros R; Arrillaga I; Segura J Metab Eng; 2008; 10(3-4):166-77. PubMed ID: 18514005 [TBL] [Abstract][Full Text] [Related]
16. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae. Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692 [TBL] [Abstract][Full Text] [Related]
17. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Borghi M; Xie DY Planta; 2016 Feb; 243(2):549-61. PubMed ID: 26530959 [TBL] [Abstract][Full Text] [Related]
18. Pharmacokinetics of perillic acid in humans after a single dose administration of a citrus preparation rich in d-limonene content. Chow HH; Salazar D; Hakim IA Cancer Epidemiol Biomarkers Prev; 2002 Nov; 11(11):1472-6. PubMed ID: 12433729 [TBL] [Abstract][Full Text] [Related]
19. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Jongedijk E; Cankar K; Ranzijn J; van der Krol S; Bouwmeester H; Beekwilder J Yeast; 2015 Jan; 32(1):159-71. PubMed ID: 25164098 [TBL] [Abstract][Full Text] [Related]
20. Improve the production of D-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. Hu Z; Li H; Weng Y; Li P; Zhang C; Xiao D J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1083-1097. PubMed ID: 33191463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]