These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39190512)
1. A Novel Method to Identify Mild Cognitive Impairment Using Dynamic Spatio-Temporal Graph Neural Network. An X; Zhou Y; Di Y; Han Y; Ming D IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3328-3337. PubMed ID: 39190512 [TBL] [Abstract][Full Text] [Related]
2. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784 [TBL] [Abstract][Full Text] [Related]
3. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. Hojjati SH; Ebrahimzadeh A; Khazaee A; Babajani-Feremi A; J Neurosci Methods; 2017 Apr; 282():69-80. PubMed ID: 28286064 [TBL] [Abstract][Full Text] [Related]
4. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A; Behav Brain Res; 2017 Mar; 322(Pt B):339-350. PubMed ID: 27345822 [TBL] [Abstract][Full Text] [Related]
5. Siamese Graph Convolutional Network quantifies increasing structure-function discrepancy over the cognitive decline continuum. Gamgam G; Yıldırım Z; Kabakçıoğlu A; Gurvit H; Demiralp T; Acar B Comput Methods Programs Biomed; 2024 Sep; 254():108290. PubMed ID: 38954916 [TBL] [Abstract][Full Text] [Related]
6. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Chen X; Zhang H; Zhang L; Shen C; Lee SW; Shen D Hum Brain Mapp; 2017 Oct; 38(10):5019-5034. PubMed ID: 28665045 [TBL] [Abstract][Full Text] [Related]
7. Personalized Functional Connectivity Based Spatio-Temporal Aggregated Attention Network for MCI Identification. Cui W; Ma Y; Ren J; Liu J; Ma G; Liu H; Li Y IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2257-2267. PubMed ID: 37104108 [TBL] [Abstract][Full Text] [Related]
8. Predicting conversion from MCI to AD by integrating rs-fMRI and structural MRI. Hojjati SH; Ebrahimzadeh A; Khazaee A; Babajani-Feremi A; Comput Biol Med; 2018 Nov; 102():30-39. PubMed ID: 30245275 [TBL] [Abstract][Full Text] [Related]
9. Temporal and Spatial Analysis of Alzheimer's Disease Based on an Improved Convolutional Neural Network and a Resting-State FMRI Brain Functional Network. Sun H; Wang A; He S Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457373 [TBL] [Abstract][Full Text] [Related]
10. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
11. Zoom-In Neural Network Deep-Learning Model for Alzheimer's Disease Assessments. Wang B; Lim JS Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433486 [TBL] [Abstract][Full Text] [Related]
12. A spatiotemporal graph transformer approach for Alzheimer's disease diagnosis with rs-fMRI. He P; Shi Z; Cui Y; Wang R; Wu D; Comput Biol Med; 2024 Aug; 178():108762. PubMed ID: 38908359 [TBL] [Abstract][Full Text] [Related]
13. Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment. Turhan G; Küçük H; Isik EO Comput Methods Programs Biomed; 2022 Jun; 221():106825. PubMed ID: 35636355 [TBL] [Abstract][Full Text] [Related]
14. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. Wee CY; Liu C; Lee A; Poh JS; Ji H; Qiu A; Neuroimage Clin; 2019; 23():101929. PubMed ID: 31491832 [TBL] [Abstract][Full Text] [Related]
15. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks. Ramzan F; Khan MUG; Rehmat A; Iqbal S; Saba T; Rehman A; Mehmood Z J Med Syst; 2019 Dec; 44(2):37. PubMed ID: 31853655 [TBL] [Abstract][Full Text] [Related]
16. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A Clin Neurophysiol; 2015 Nov; 126(11):2132-41. PubMed ID: 25907414 [TBL] [Abstract][Full Text] [Related]
17. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection. Kam TE; Zhang H; Jiao Z; Shen D IEEE Trans Med Imaging; 2020 Feb; 39(2):478-487. PubMed ID: 31329111 [TBL] [Abstract][Full Text] [Related]
19. Abnormal meta-state activation of dynamic brain networks across the Alzheimer spectrum. Núñez P; Poza J; Gómez C; Rodríguez-González V; Hillebrand A; Tewarie P; Tola-Arribas MÁ; Cano M; Hornero R Neuroimage; 2021 May; 232():117898. PubMed ID: 33621696 [TBL] [Abstract][Full Text] [Related]
20. A confounder controlled machine learning approach: Group analysis and classification of schizophrenia and Alzheimer's disease using resting-state functional network connectivity. Hassanzadeh R; Abrol A; Pearlson G; Turner JA; Calhoun VD PLoS One; 2024; 19(5):e0293053. PubMed ID: 38768123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]